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Abstract 

 
After a short introduction the problems of the 2

nd
 and the 9

th
 International Physics Olympiad, organized 

in Budapest, Hungary, 1968 and 1976, and their solutions are presented. 

 

 

 

Introduction 
 

 

Following the initiative of Dr. Waldemar Gorzkowski [1] I present the problems and 

solutions of the 2
nd

 and the 9
th

 International Physics Olympiad, organized by Hungary. I have 

used Prof. Rezső Kunfalvi’s problem collection [2], its Hungarian version [3] and in the case 

of the 9
th

 Olympiad the original Hungarian problem sheet given to the students (my own 

copy). Besides the digitalization of the text, the equations and the figures it has been made 

only small corrections where it was needed (type mistakes, small grammatical changes). I 

omitted old units, where both old and SI units were given, and converted them into SI units, 

where it was necessary. 

If we compare the problem sheets of the early Olympiads with the last ones, we can 

realize at once the difference in length. It is not so easy to judge the difficulty of the problems, 

but the solutions are surely much shorter. 

The problems of the 2
nd

 Olympiad followed the more than hundred years tradition of 

physics competitions in Hungary. The tasks of the most important Hungarian theoretical 

physics competition (Eötvös Competition), for example, are always very short. Sometimes the 

solution is only a few lines, too, but to find the idea for this solution is rather difficult. 

Of the 9
th

 Olympiad I have personal memories; I was the youngest member of the 

Hungarian team. The problems of this Olympiad were collected and partly invented by 

Miklós Vermes, a legendary and famous Hungarian secondary school physics teacher. In the 

first problem only the detailed investigation of the stability was unusual, in the second 

problem one could forget to subtract the work of the atmospheric pressure, but the fully 

“open” third problem was really unexpected for us. 

The experimental problem was difficult in the same way: in contrast to the Olympiads 

of today we got no instructions how to measure. (In the last years the only similarly open 

experimental problem was the investigation of “The magnetic puck” in Leicester, 2000, a 

really nice problem by Cyril Isenberg.) The challenge was not to perform many-many 

measurements in a short time, but to find out what to measure and how to do it. 

Of course, the evaluating of such open problems is very difficult, especially for several 

hundred students. But in the 9
th

 Olympiad, for example, only ten countries participated and 

the same person could read, compare, grade and mark all of the solutions. 
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2
nd

 IPhO (Budapest, 1968) 
 

 

Theoretical problems 

 

Problem 1 
 

On an inclined plane of 30° a block, mass m2 = 4 kg, is joined by a light cord to a solid 

cylinder, mass m1 = 8 kg, radius r = 5 cm (Fig. 1). Find the acceleration if the bodies are 

released. The coefficient of friction between the block and the inclined plane  = 0.2. Friction 

at the bearing and rolling friction are negligible. 

 

 
 

Solution 
 

 If the cord is stressed the cylinder and the block are moving with the same 

acceleration a. Let F be the tension in the cord, S the frictional force between the cylinder and 

the inclined plane (Fig. 2). The angular acceleration of the cylinder is a/r. The net force 

causing the acceleration of the block: 
 

  Fgmgmam   cossin 222 , 
 

and the net force causing the acceleration of the cylinder: 
 

  FSgmam  sin11 . 
 

The equation of motion for the rotation of the cylinder: 
 

  I
r

a
rS  . 

 

(I is the moment of inertia of the cylinder, Sr is the torque of the frictional force.) 

Solving the system of equations we get: 
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The moment of inertia of a solid cylinder is 
2

2

1rm
I  . Using the given numerical values: 
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Discussion (See Fig. 3.) 
 

 The condition for the system to start moving is a > 0. Inserting a = 0 into (1) we 

obtain the limit for angle 1: 
 

  0667.0
3

tan
21

2
1 







mm

m
,    81.31 . 

 

For the cylinder separately 01  , and for the block separately   31.11tan 1

1  . 

 If the cord is not stretched the bodies move separately. We obtain the limit by 

inserting F = 0 into (3): 
 

  6.031tan
2

1
2 








 

I

rm
,    96.302 . 

 

 The condition for the cylinder to 

slip is that the value of S (calculated from 

(2) taking the same coefficient of friction) 

exceeds the value of  cos1gm . This gives 

the same value for 3 as we had for 2. The 

acceleration of the centers of the cylinder 

and the block is the same: 

  cossin g , the frictional force at the 

bottom of the cylinder is  cos1gm , the 

peripheral acceleration of the cylinder is 

 cos
2

1 g
I

rm
 . 

 

Problem 2 
 

 There are 300 cm
3
 toluene of C0  temperature in a glass and 110 cm

3
 toluene of 

C100  temperature in another glass. (The sum of the volumes is 410 cm
3
.) Find the final 

volume after the two liquids are mixed. The coefficient of volume expansion of toluene 

  1
C001.0


 .

 
Neglect the loss of heat. 
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Solution 
 

 If the volume at temperature t1 is V1, then the volume at temperature C0  is 

 1110 1 tVV  . In the same way if the volume at t2 temperature is V2, at C0  we have 

 2220 1 tVV  . Furthermore if the density of the liquid at C0  is d, then the masses are 

dVm 101   and dVm 202  , respectively. After mixing the liquids the temperature is 
 

  
21

2211

mm
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t




 . 

 

The volumes at this temperature are  tV 110  and  tV 120 . 

The sum of the volumes after mixing: 
 

  

     

    21220110

2202011010
2211

2010

21

221121
2010

201020102010

11

11

VVtVtV

tVVtVV
d

tm

d

tm
VV

mm

tmtm

d

mm
VV

tVVVVtVtV
































 

 

The sum of the volumes is constant. In our case it is 410 cm
3
. The result is valid for any 

number of quantities of toluene, as the mixing can be done successively adding always one 

more glass of liquid to the mixture. 

 

Problem 3 
 

 Parallel light rays are falling on the plane surface of a semi-cylinder made of glass, at 

an angle of 45, in such a plane which is perpendicular to the axis of the semi-cylinder 

(Fig. 4). (Index of refraction is 2 .) Where are the rays emerging out of the cylindrical 

surface? 

 
 

Solution 
 

 Let us use angle  to describe the position of the rays in the glass (Fig. 5). According 

to the law of refraction 2sin45sin   , 5.0sin  ,  30 . The refracted angle is 30 

for all of the incoming rays. We have to investigate what happens if  changes from 0 to 

180. 

Figure 4 Figure 5 

 

 

 

A 

C 

D O 

B 

E 



   
 

 12 

 It is easy to see that   can not be less than 60 (  60AOB ). The critical angle is 

given by 221sin  ncrit ; hence  45crit . In the case of total internal reflection 

 45ACO , hence  754560180 . If   is more than 75 the rays can emerge 

the cylinder. Increasing the angle we reach the critical angle again if  45OED . Thus the 

rays are leaving the glass cylinder if: 

   16575  , 

CE, arc of the emerging rays, subtends a central angle of 90. 

 

Experimental problem 
 

 Three closed boxes (black boxes) with two plug sockets on each are present for 

investigation. The participants have to find out, without opening the boxes, what kind of 

elements are in them and measure their characteristic properties. AC and DC meters (their 

internal resistance and accuracy are given) and AC (5O Hz) and DC sources are put at the 

participants’ disposal. 

 

Solution 
 

 No voltage is observed at any of the plug sockets therefore none of the boxes contains 

a source. 

 Measuring the resistances using first AC then DC, one of the boxes gives the same 

result. Conclusion: the box contains a simple resistor. Its resistance is determined by 

measurement. 

 One of the boxes has a very great resistance for DC but conducts AC well. It contains 

a capacitor, the value can be computed as 
CX

C


1
 . 

 The third box conducts both AC and DC, its resistance for AC is greater. It contains a 

resistor and an inductor connected in series. The values of the resistance and the inductance 

can be computed from the measurements. 
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9
th

 IPhO (Budapest, 1976) 
 

 

Theoretical problems 

 

Problem 1 
 

A hollow sphere of radius R = 0.5 m rotates about a vertical axis through its centre 

with an angular velocity of   = 5 s
-1

.
 
Inside the sphere a small block is moving together with 

the sphere at the height of R/2 (Fig. 6). (g = 10 m/s
2
.) 

a) What should be at least the coefficient of friction to fulfill this condition? 

b) Find the minimal coefficient of friction also for the case of   = 8 s
-1

. 

c) Investigate the problem of stability in both cases, 

) for a small change of the position of the block, 

) for a small change of the angular velocity of the sphere. 

 

 
 

Solution 
 

a) The block moves along a horizontal circle of radius sinR . The net force acting on 

the block is pointed to the centre of this circle (Fig. 7). The vector sum of the normal force 

exerted by the wall N, the frictional force S and the weight mg is equal to the resultant: 

 sin2Rm . 
 

The connections between the horizontal and vertical components: 
 

   cossinsin2 SNRm  , 
 

   sincos SNmg  . 
 

The solution of the system of equations: 
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The block does not slip down if 
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In this case there must be at least this friction to prevent slipping, i.e. sliding down. 
 

b) If on the other hand 1
cos2


g

R 
 some 

friction is necessary to prevent the block to slip 

upwards.  sin2Rm  must be equal to the resultant 

of forces S, N and mg. Condition for the minimal 

coefficient of friction is (Fig. 8): 
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c) We have
 
to investigate a and b as functions of  and  in the cases a) and b) (see  

Fig. 9/a and 9/b): 

 

 
 

In case a): if the block slips upwards, it comes back; if it slips down it does not return. 

If   increases, the block remains in equilibrium, if   decreases it slips downwards. 

In case b): if the block slips upwards it stays there; if the block slips downwards it 

returns. If  increases the block climbs upwards
-
, if  decreases the block remains in 

equilibrium. 

 

Problem 2 
 

The walls of a cylinder of base 1 dm
2
, the piston and the inner dividing wall are 

perfect heat insulators (Fig. 10). The valve in the dividing wall opens if the pressure on the 

right side is greater than on the left side. Initially there is 12 g helium in the left side and 2 g 

helium in the right side. The lengths of both sides are 11.2 dm each and the temperature is 
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C0 . Outside we have a pressure of 100 kPa. 

The specific heat at constant volume is 

cv = 3.15 J/gK, at constant pressure it is 

cp = 5.25 J/gK. The piston is pushed slowly 

towards the dividing wall. When the valve 

opens we stop then continue pushing slowly 

until the wall is reached. Find the work done 

on the piston by us. 

 

Solution 
 

The volume of 4 g helium at C0  temperature and a pressure of 100 kPa is 22.4 dm
3
 

(molar volume). It follows that initially the pressure on the left hand side is 600 kPa, on the 

right hand side 100 kPa. Therefore the valve is closed. 

An adiabatic compression happens until the pressure in the right side reaches 600 kPa 

( = 5/3). 
 

  3535 6002.11100 V , 
 

hence the volume on the right side (when the valve opens): 
 

  V = 3.82 dm
3
. 

 

From the ideal gas equation the temperature is on the right side at this point 
 

  K5521 
nR

pV
T . 

 

During this phase the whole work performed increases the internal energy of the gas: 
 

  W1 = (3.15 J/gK)  (2 g)  (552 K – 273 K) = 1760 J. 
 

Next the valve opens, the piston is arrested. The temperature after the mixing has been 

completed: 
 

  K313
14

552227312
2 


T . 

 

During this phase there is no change in the energy, no work done on the piston. 

An adiabatic compression follows from 11.2 + 3.82 = 15.02 dm
3
 to 11.2 dm

3
: 

 

  32

3

32 2.1102.15313  T , 
 

hence 
 

  T3 = 381 K. 

The whole work done increases the energy of the gas: 
 

  W3 = (3.15 J/gK)  (14 g)  (381 K – 313 K) = 3000 J. 
 

The total work done: 
 

  Wtotal = W1 + W3 = 4760 J. 
 

The work done by the outside atmospheric pressure should be subtracted: 
 

  Watm = 100 kPa  11.2 dm
3
 = 1120 J. 

 

The work done on the piston by us: 
 

  W = Wtotal – Watm = 3640 J. 

11.2 dm 11.2 dm 

1 dm
2 

Figure 10 
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Problem 3 
 

Somewhere in a glass sphere there is an air bubble. Describe methods how to 

determine the diameter of the bubble without damaging the sphere. 

 

Solution 
 

We can not rely on any value about the density of the glass. It is quite uncertain. The 

index of refraction can be determined using a light beam which does not touch the bubble. 

Another method consists of immersing the sphere into a liquid of same refraction index: its 

surface becomes invisible. 

A great number of methods can be found. 

We can start by determining the axis, the line which joins the centers of the sphere and 

the bubble. The easiest way is to use the “tumbler-over” method. If the sphere is placed on a 

horizontal plane the axis takes up a vertical position. The image of the bubble, seen from both 

directions along the axis, is a circle. 

If the sphere is immersed in a liquid of same index 

of refraction the spherical bubble is practically inside a 

parallel plate (Fig. 11). Its boundaries can be determined 

either by a micrometer or using parallel light beams. 

Along the axis we have a lens system consisting
,
 of 

two thick negative lenses. The diameter of the bubble can 

be determined by several measurements and complicated 

calculations. 

If the index of refraction of the glass is known we can fit a plano-concave lens of same 

index of refraction to the sphere at the end of the axis (Fig. 12). As ABCD forms a parallel 

plate the diameter of the bubble can be measured using parallel light beams. 

 

 
 

Focusing a light beam on point A of the surface of the sphere (Fig. 13) we get a 

diverging beam from point A inside the sphere. The rays strike the surface at the other side 

and illuminate a cap. Measuring the spherical cap we get angle . Angle  can be obtained in 

a similar way at point B. From 
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 The diameter of the bubble can be determined also by the help of X-rays. X-rays are 

not refracted by glass. They will cast shadows indicating the structure of the body, in our case 

the position and diameter of the bubble. 

We can also determine the moment of inertia with respect to the axis and thus the 

diameter of the bubble. 

 

Experimental problem 
 

The whole text given to the students: 

 

At the workplace there are beyond other devices a test tube with 12 V electrical 

heating, a liquid with known specific heat (c0 = 2.1 J/gC) and an X material with unknown 

thermal properties. The X material is insoluble in the liquid. 

Examine the thermal properties of the X crystal material between room temperature 

and 70 C. Determine the thermal data of the X material. Tabulate and plot the measured data. 

(You can use only the devices and materials prepared on the table. The damaged 

devices and the used up materials are not replaceable.) 

 

Solution 
 

Heating first the liquid then the liquid and the crystalline substance together two time-

temperature graphs can be plotted. From the graphs specific heat, melting point and heat of 

fusion can be easily obtained. 
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