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Chapter 1

Superconductors can be
described by single-particle
Hamiltonians

In the mean-field approximation, superconductors are described by many-particle
Hamiltonians with anomalous terms. These describe the disappearance of two
electrons that form a Cooper pair, and the appearance of two electrons from
a broken Cooper pair. Because of such processes, the particle number is not
conserved, the ground state is a complicated object. Nevertheless, the parity of
fermions in the system is conserved, and therefore, the ground state parity is
fixed.

1.1 The ground state of a mean-field supercon-
ductor can be constructed from its normal
modes

The grand canonical Hamiltonian of a superconductor on a 1D lattice of N sites
reads,

Ĥ =

N∑
j=1

∑
s=±1

{
(uj ±Bj)ĉ†j,sĉj,s + tj ĉ

†
j+1,sĉj,s + t∗j ĉ

†
j,sĉj+1,s

}
+
∑
j

(∆j ĉ
†
j↑ĉ
†
j↓ + ∆∗j ĉj↓ĉj↑). (1.1)

The position index j is understood modulo N , which means that we have peri-
odic boundary conditions, N+1 = 1. Open boundary conditions are obtained by
setting tN = 0. The first sum describes the onsite potentials uj , which includes
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the chemical potential, the site-dependent Zeeman terms which distinguish be-
tween spin up and spin down, and the hopping between neighboring sites with
amplitudes tj . It is the next sum that includes the effect of superconductiv-
ity in the mean-field approximation, including the site-dependent pair potential
∆j . This is here treated as an additional complex parameter, corresponding
to the wave function of the Cooper pair condensate. The interpretation of the
last term is that Cooper pairs can be broken/created, in which case and two
electrons with opposite spins appear/disappear at site j. Both breaking and
creating Cooper pairs are procedures with bosonic enhancement factors rep-
resented by the complex numbers ∆j . These amplitudes could be calculated
self-consistently, but in these notes, as in a large part of the literature, ∆j is
treated as a parameter, a given complex function of position.

In the mean-field approximation, a superconductor is described by a free
Hamiltonian, i.e., quadratic in the electron creation and annihilation operators.
Note that although the number of fermions is not conserved, the parity is.

The chain can host at most 2N electrons, and so it has 22N eigenstates. Since
this is a free Hamiltonian (quadratic), it can be diagonalized by introducing new
fermionic operators,

d̂l =
∑
j,s

ul,j,sĉj,s + vl,j,sĉ
†
j,s; (1.2)

d̂†l =
∑
j,s

u∗l,j,sĉ
†
j,s + v∗l,j,sĉj,s. (1.3)

We require that the d̂l obey fermionic commutation relations,

{d̂l, d̂m} = 0; {d̂l, d̂†m} = δlm. (1.4)

What requirements do the commutation relations impose on the
coefficients ul,j,s and vl,j,s?

These particles diagonalize the Hamiltonian in the sense that

Ĥ =

2N∑
l=1

Eld̂
†
l d̂l. (1.5)

This looks very much like the standard procedure for free Hamiltonians, how-
ever, because of the superconducting pair potential, ∆, we cannot take d̂l to be a
linear combination of only electron annihilation operators, ĉj . This means that

d̂l and d̂†l are described on the same footing. We can actually use this freedom

to ensure that all of the d̂ operators describe positive energy excitations:

El ≥ 0. (1.6)

This can be achieved by redefining the negative energy fermions as d̂↔ d̂†.
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Once we have found the operators d̂l, we can easily interpret the spectrum
of Ĥ as consisting of states with a given number of fermions:

|0, . . . , 0, 0, 1〉 = d̂†1 |GS〉 (1.7)

|0, . . . , 0, 1, 0〉 = d̂†2 |GS〉 (1.8)

|0, . . . , 0, 1, 1〉 = d̂†2d̂
†
1 |GS〉 (1.9)

In the above definition, the Ground State |GS〉 of the Hamiltonian was
introduced. This is a complicated state when expressed in the basis of the
original fermions ĉj : it is in general a superposition of states with different
particle numbers, since the Hamiltonian does not conserve particle number.
However, since the Hamiltonian conserves the parity of the particle number, the
ground state is a superposition of states with only odd, or only even number of
particles ( ĉl fermions).

One way to construct the ground state |GS〉 is to turn the logic of the
previous paragraph around. A state containing no ĉl fermions, |0〉, is far from
the ground state of the Hamiltonian, and can contain a superposition different
number of excitations d̂ fermions. Starting from such a simple state, we can
take away all the components of it that contain excitations d̂: then we are left
with |GS〉, if the initial state had a |GS〉 component.

d̂2N d̂2N−1 . . . d̂1 |0〉 = |GS〉 or 0. (1.10)

The ground state can be certainly obtained if we remove all single-particle
excitations from the mixture of all possible states,

|GS〉 〈GS| = d̂2N d̂2N−1 . . . d̂1(
1∑

n1=0

. . .

1∑
n2N=0

ĉ†n2N

2N . . . ĉ†n1

1 |0〉 〈0| ĉn1
1 . . . ĉn2N

2N

)
d̂†1d̂
†
2 . . . d̂

†
2N .

(1.11)

1.2 The normal modes of a mean-field super-
conductor are obtained by diagonalizing the
Bogoliubov–de Gennes Hamiltonian

The key to understanding the dynamics of the system is finding the coefficients
ul,j,s, vl,j,s of the eigenstates d̂l, as in Eq. (1.2). There is a trick to obtain
these, called the Bogoliubov–de Gennes formalism, that involves a redundant
representation of the states.

We begin by rewriting the Hamiltonian as

Ĥ =
1

2

2N∑
l=1

El(d̂
†
l d̂l − d̂ld̂

†
l ) +

1

2

2N∑
l=1

El. (1.12)



6 CHAPTER 1. BOGOLIUBOV-DE GENNES TRICK

Using a practical shorthand, this can be written as:

ĉ† = (ĉ†1,↑, ĉ
†
1,↓, . . . , ĉ

†
N,↑, ĉ

†
N,↓); (1.13)

Ĥ =
∑
α,β

(
ĉ†αhα,β ĉβ +

1

2
ĉ†α∆α,β ĉ

†
β + +

1

2
ĉβ∆∗α,β ĉα

)
; (1.14)

Ĥ =
1

2

(
ĉ† ĉ

)
H
(

ĉ
ĉ†

)
+

1

2
Trh; (1.15)

H =

(
h ∆
−∆∗ −h∗

)
, (1.16)

where H is the matrix of the Bogoliubov-de Gennes Hamiltonian. The factors
of 1/2 were placed conveniently so as not to conflict with Eq. (1.1). Hermiticity
of Ĥ implies h is Hermitian, and therefore, h∗ = hT . Since the electrons are
fermions, ∆ can be chosen to be a complex antisymmetric matrix, i.e.,

hα,β = h∗β,α; (1.17)

∆α,β = −∆β,α. (1.18)

Using these choices, the PHS symmetry, represented by ΣXK, right away:

ΣX =

(
0 I
I 0

)
; (1.19)

ΣXH?ΣX = −H. (1.20)

Using the particle-hole symmetry of H, we can diagonalize it using only the
positive energy eigenstates,

H
(
u∗j
v∗j

)
= Ej

(
u∗j
v∗j

)
, for j = 1, . . . , N ; (1.21)

H
(
vj
uj

)
= −Ej

(
vj
uj

)
, for j = 1, . . . , N, (1.22)

where the jth eigenvector of H was written as (uj , vj)
†, with uj and vj both

N -component vectors. Remember that H was a Hermitian matrix, and thus its
eigenvectors form an orthonormal basis. We can then express H as

H =
∑
j

Ej

(
u∗j
v∗j

)(
uj vj

)
−
∑
j

Ej

(
vj
uj

)(
v∗j u∗j

)
(1.23)

Comparison with Eq. (1.12) reveals that the u’s and the v’s are truly the coeffi-

cients of the ĉ’s in the eigenmodes of the system, the d̂ fermions, as per Eq. (1.2).
Orthonormality of the eigenvectors translates to the required anticommutation
relations.
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1.3 Simplest case: single site

As an illustrative case, we consider the simplest mean-field superconductor,
consisting of a single site. The Hamiltonian reads

Ĥ = −µ(ĉ†↑ĉ↑ + ĉ†↓ĉ↓) + B(ĉ†↑ĉ↑ − ĉ†↓ĉ↓) + ∆ĉ†↑ĉ
†
↓ + ∆∗ĉ↓ĉ↑. (1.24)

For such a small system, we can actually calculate everything in the Hilbert
space of all states:

Ĥ =

(
|0〉 |↑↓〉 |↓〉 |↑〉

)
0 ∆∗

∆ −2µ
−µ−B

−µ+B



〈0|
〈↑↓|
〈↓|
〈↑|

 (1.25)

(1.26)

This 4 by 4 matrix is composed of 2 blocks of 2 by 2 matrices, both of which
have the form Xσx + Y σy +Zσz. Since such matrices will occur often later on,
we derive their spectrum here:(

Z X − iY
X + iY −Z

)(
X − iY
±E − Z

)
= ±E

(
X − iY
±E − Z

)
; E =

√
X2 + Y 2 + Z2.

(1.27)

In our case,

E =

√
|∆|2 + µ2. (1.28)

The energy levels are shown in Fig. 1.1. We can interpret the energy levels
by introducing µ, B and ∆ sequentially. First, µ shifts the energy of all levels,
depending on the number of

For weak magnetic fields, B2 < µ2+∆2, the ground state is |GS〉 = −∆∗ |0〉+
(E + µ) |↑↓〉. For weak ∆, this can be approximated as |GS〉 ≈ |0〉+ ∆/µ |↑↓〉.

The spectrum of Ĥ is symmetric around E = −µ. This symmetry has
nothing to do with superconductivity, it is a generic feature of free Hamiltonians,
which can be explained simply. All energy levels can be obtained from the
bottom up, starting with |GS〉, and adding particles d̂, as indicated by the
slashed lines. Alternatively, one can go top-down: with the state where all d
fermions are present, and subtract the d’s. The symmetry point can be shifted
by onsite potentials, but is always there.

We now calculate this simplest case using the BdG formalism.

Ĥ =
1

2

(
ĉ†↑ ĉ†↓ ĉ↑ ĉ↓

)
−µ+B 0 0 ∆

0 −µ−B −∆ 0
0 −∆∗ µ−B 0

∆∗ 0 0 µ+B


︸ ︷︷ ︸

H


ĉ↑
ĉ↓
ĉ†↑
ĉ†↓


(1.29)
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Energy

Figure 1.1: Energy levels of a single-site superconductor.
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The BdG matrix H falls apart to two 2× 2 matrices:

u∗ĉ↑ + v∗ĉ†↓ : B ± E;

(
u
v

)
=

(
∆

µ± E

)
(1.30)

u∗ĉ↓ + v∗ĉ†↑ : −B ± E;

(
u
v

)
=

(
−∆
µ± E

)
. (1.31)

These are 4 different d operators. However, they are not independent:[
∆∗ĉ↑ + (µ± E)ĉ†↓

]†
= (µ± E) ĉ↓ + ∆ ĉ†↑. (1.32)

To compare the fermions on the rhs with the fermions from the “second batch”,
note that

µ± E
∆

=
−∆∗

µ∓ E
, (1.33)

which follows from E2 = µ2 + ∆2.
In the weak magnetic field case, B2 < µ2 + |∆|2, the positive energy Bogoli-

ubov operators are:

d̂1 = −∆∗ĉ↓ + (µ+ E)ĉ†↑; (1.34)

d̂2 = ∆∗ĉ↑ + (µ+ E)ĉ†↓. (1.35)

To check consistency, you can verify that the recipe for the ground state based
on the BdG formalism gives the same |GS〉 as calculated above,

|GS〉 = d̂1d̂2 |0〉 = d̂1d̂2 |↑↓〉 . (1.36)

1.4 Hopping

In a longer chain, it is more convenient to order the operators according to site
first, then according to creation or annihilation, then spin. This makes the PHS
less transparent, but it is easier to link with a general tight binding Hamiltonian.

1

2

(
ĉ†1,↑ ĉ†1,↓ ĉ†2,↑ ĉ†2,↓ ĉ1,↑ ĉ1,↓ ĉ2,↑ ĉ2,↓

)
H



ĉ1,↑
ĉ1,↓
ĉ2,↑
ĉ2,↓
ĉ†1,↑
ĉ†1,↓
ĉ†2,↑
ĉ†2,↓


(1.37)
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1.5 p-wave SC

(Introduction to p-wave).
Assume no s-wave ∆, only p-wave. The simplest model is a spin polarized

chain:

Ĥ =
∑
j

Vj ĉ
†
j ĉj +

∑
j

(
∆∗j ĉj+1ĉj − tj ĉ†j ĉj+1 + h.c.

)
(1.38)

We use the convention of the Alicea review, without the unnecessary factor of
1/2.

The BdG Hamiltonian reads

H =



V1 0 −t1 ∆1 −t∗N −∆N

0 −V1 −∆∗1 t∗1 ∆∗N tN
−t∗1 −∆1 V2 0 −t2 ∆2

∆∗1 t1 0 −V2 −∆∗2 t∗2
−t∗2 −∆2 V3 0 −t3 ∆3

∆∗2 t2 0 −V3 −∆∗3 t∗3
−tN ∆N −t∗3 −∆3 VN 0
−∆∗N t∗N ∆∗3 t3 0 −VN


, (1.39)

where we supressed the 2× 2 zero matrices for better readability.
This can be written as∑

j

d̂†jUj d̂j +
∑
j

d̂†jTj d̂j+1 (1.40)

using the notation d̂†j = (cj†, cj). This has the same form as a usual nearest
neighbor hopping Hamiltonian, with

Uj = Vjσz; Tj = −σzRe tj − iIm tj + iσyRe ∆j + iσxIm ∆j . (1.41)

In the translation invariant bulk, we can look for eigenstates of H in the form
of d̂j = d̂1e

ikj . This choice of sign of k is so we have the same formulas as for
ordinary Hamiltonians. Bear in mind though, that because of the extra complex
conjugation, we have d(k) =

∑
j(d̂
∗
j,1cj + d̂∗j,2c

†
j)e
−ikj . The BdG Hamiltonian

reads,

H(k) = U + (T + T †) cos k + i(T − T †) sin k; (1.42)

H(k) = (V − 2 Re t cos k)σz + 2 sin k(Im t− σyRe ∆− σxIm ∆). (1.43)

To see the antiunitary symmetries of this Hamiltonian, consider its complex
conjugate (remember that we conjugate in real space, meaning k flips sign too):

KH(k)K = (V − 2 Re t cos k)σz + 2 sin k(Im t+ σyRe ∆− σxIm ∆). (1.44)

There is a sign flip in the term proportional to σ0, this cannot be undone by
conjugation via a unitary operator. This means that we can only have TRS if
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t ∈ R. Even then, we would need to undo the sign flip the σx term only, which
cannot be done in a unitary way. So we have TRS, represented by K, only if
both t and ∆ are real.

For PHS, all terms in H need to undergo a sign flip. We need an extra sign
flip for the σz and the σy terms, which can be achieved by a σx operator:

σxKH(k)Kσx = σxH(−k)σx = −H(k). (1.45)

Thus, we have PHS, represented by σxK which squares to +1, and possibly
also TRS, represented by K, which squares to +1. So we are either in class D,
or in BDI. We look at class D first.

Express the topological invariant via the polarization.
For a 2-band Hamiltonian, this has a practical graphical representation.

H(k) = ~h(k)~σ = hx(k)σx + hy(k)σy + hz(k)σz; (1.46)

KH(k)K = H∗(−k) = ~h(−k)~σ∗ = hx(−k)σx − hy(−k)σy + hz(−k)σz; (1.47)

σxKH(k)Kσx = hx(−k)σx + hy(−k)σy − hz(−k)σz; (1.48)

This gives as requirement for PHS,

hx,y(k) = −hx,y(−k); hz(k) = hz(−k). (1.49)

At the TRI momenta k = 0 and k = π, this simplifies to hx,y(k = 0, π) = 0.
Since the gap has to remain open, we have 4 distinct options as to the sign of
hz(0) and hz(π). Consider the path of the unit vector of ~h(k),

~n(k) = ~h(k)/
∣∣∣~h(k)

∣∣∣ , (1.50)

on the Bloch sphere. Looking at the path from the North Pole, it either comes
back there from k = 0 → π, in which case, the path looks like an 8, or goes to
the South Pole, in which case it looks like a 0. Because of PHS, the path from
k = 0 → −π is the mirror image of the path from k = 0 → π. In the “8” case,
this mirroring undoes any Berry phase obtained, so the polarization is 0. In the
“0” case, it ensures that the surface of the sphere is cut into 2 equal halves, thus
giving a Berry phase of π, polarization of 1/2.

We can express the topological invariant in a straightforward way in the
basis where PHS is represented by K, i.e., after transformation by σx (by Σx in
the general case).
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Chapter 2

The Kitaev Wire is mapped
to the SSH model using
Majorana Fermions

2.1 The Kitaev Wire and the SSH model are in
the same universality class

The Kitaev wire has the same fundamental symmetries as the SSH model, as
listed in Table 2.1. Therefore the BdG Hamiltonian of the Kitaev wire can host
robust edge states.

2.1.1 The mapping is made explicit by a basis transfor-
mation

To map the Kitaev wire onto the SSH model, we can use a unitary rotation to
map σx to σz. This is achieved by

H′ = eiπ/4σyHe−iπ/4σy =
1

2

(
1 1
−1 1

)
H
(

1 −1
1 1

)
. (2.1)

Kitaev SSH Kitaev MF
PHS (+1) σxH∗σx = −H σzH

∗
SSHσz = −HSSH A∗ = A

TRS (+1) H∗ = H H∗SSH = HSSH σzA∗σz = −A
CS σxHσx = −H σzHSSHσz = −HSSH σzAσz = −A

Table 2.1: The symmetries of the Kitaev wire and the Su–Schrieffer–Heeger
(SSH) model. In the last column, the representation of the symmetries on the
real matrix A representing the Kitaev wire with Majorana Fermions.

13
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Substituting Eq. (1.16), this corresponds to

H′ =

(
i(Imh+ Im ∆) −Reh+ Re ∆
−Reh− Re ∆ i(Imh− Im ∆)

)
. (2.2)

This is a Hermitian matrix because h is Hermitian and ∆ is antisymmetric.
On the level of the fermion operators, this corresponds to

Ĥ − 1

2
Trh =

1

8

(
ĉ† ĉ

)(
1 −1
1 1

)(
1 1
−1 1

)
H
(

1 −1
1 1

)(
1 1
−1 1

)(
ĉ
ĉ†

)
(2.3)

=
1

8

(
b̂ iâ

)
H′
(

b̂
−iâ

)
, (2.4)

where we introduced Majorana fermions according to

b̂j = ĉj + ĉ†j ; (2.5a)

âj =
ĉj − ĉ†j
i

. (2.5b)

These so-called Majorana fermions are often used to treat superconducting sys-
tems. They are self-adjoint fermionic operators, so that for any j, l:

{âj , b̂l} = 0; (2.6)

{âj , âl} = {b̂j , b̂l} = δjl. (2.7)

The symmetries of H′ are represented by the same operators as those of the
SSH model.

2.1.2 A next basis transformation to Majorana Fermions
makes the role of PHS more transparent

Since it is PHS that plays a central role, it is worthwhile to make yet another
basis transformation that simplifies its representation. We define

H′′ =

(
1 0
0 i

)
H′
(

1 0
0 −i

)
. (2.8)

We then have

H′′∗ =

(
1 0
0 −i

)
H′∗

(
1 0
0 i

)
=

(
1 0
0 i

)
σzH′

∗
σz

(
1 0
0 −i

)
= −H′′. (2.9)

In other words, H′′ is a Hermitian matrix with all elements purely imaginary.
Thus it can be written as i times a real antisymmetric matrix,

H′′ = iA; Amn ∈ R for m,n = 1, . . . , 2n; (2.10)

A = −i
(

1 1
−i i

)
H
(

1 i
1 −i

)
=

(
Imh+ Im ∆ Reh− Re ∆
−Reh− Re ∆ Imh− Im ∆

)
. (2.11)
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On the level of the Fock-space Hamiltonian, this corresponds to rewriting it
in terms of the Majorana fermions,

Ĥ − 1

2
Trh =

i

8

(
b̂ â

)
A
(

b̂
â

)
. (2.12)

Time-reversal and chiral symmetries

If the matrix elements of H are all real, we also have time-reversal symmetry.
This translates to reality of matrix elements of H′, and thus,

σzH′′
∗
σz = H′′; (2.13)

σzA∗σz = −A. (2.14)

In the time-reversal symmetric case, get chiral symmetry for free, which is rep-
resented on H′′ in the same way as in the SSH model,

σzH′′σz = −H′′; (2.15)

σzAσz = −A. (2.16)

2.1.3 The Kitaev wire is more robust

The topological protection of the edge states in the SSH model depended on
two fragile features: the robustness of the chiral symmetry and the indivisibility
of the unit cell. An isolated edge state can be moved away from 0 energy by
breaking chiral symmetry. This is easily realized, e.g., using an onsite potential.
On the other hand, just changing the chain termination by adding an extra site
is enough to move a bound state from 0 energy as well.

In the Kitaev wire, both the particle-hole symmetry and the indivisibility of
the unit cell are hardwired into the formalism, and therefore are robust. Thus
Majorana fermions as end states are more robust.

2.2 Majorana fermion operators have simple prop-
erties

Given a set γ̂ of Majorana fermions,

γ̂ = {γ̂1, γ̂2 . . . , γ̂2n} = a1, b1, a2, b2, . . . , an, bn, (2.17)

we consider some of their properties.

2.2.1 Majorana fermions transform well under real or-
thogonal transformations

If we mix Majorana fermion operators using a real orthogonal transformation,

η̂ = O γ̂, (2.18)

(2.19)
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the new operators η̂j are also Majorana fermions.
This property is useful later when we use the Pfaffian.

2.2.2 For complex pair potential, there is a more practical
way to introduce Majorana fermions

The norm of the Majorana fermions is chosen so that for any site, â2
j = b̂2j = 1.

It is simple to see that the only way to introduce these operators is:

b̂j = e−iφj/2ĉj + eiφj/2ĉ†j ; (2.20a)

âj = −i
(
e−iφj/2ĉj − eiφj/2ĉ†j

)
. (2.20b)

These relations can be inverted to give

ĉj =
eiφj/2

2
(b̂j + iâj); (2.21a)

ĉ†j =
e−iφj/2

2
(b̂j − iâj). (2.21b)

The Hermitian (“real”) Majorana fermion operators are the “real parts” and
“imaginary parts” of the original (“complex”) fermion operators ĉ. There is a
free parameter φj , which we can set to the phase of the p-wave order parameter:
∆j = ∆je

iφj , with ∆j denoting its absolute value.
Rewriting the Hamiltonian in terms of the Majorana operators introduced in

Eq. (2.20) above, corresponds to a transformation on the Bogoliubov-de Gennes
Hamiltonian. Starting from Eq. (1.15), we have:

The matrixA associated to the BdG Hamiltonian is real and skew-symmetric.

2.3 Pfaffian and the ground-state parity

The fermion parity of the ground state is a topological invariant of a 0-dimensional
superconductor. In the noninteracting case it can be directly computed from
the Bogoliubov-de Gennes Hamiltonian using the Pfaffian.

2.3.1 Pfaffian

In this section we review the Pfaffian, an important tool for skew symmetric
matrices.

We consider an M ×M skew symmetric matrix A, with matrix elements
alm, i.e.,

AT = −A; alm = −aml. (2.22)

The determinant of such a matrix is a homogeneous Mth order polynomial of
its matrix elements.
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If the matrix is odd dimensional, M = 2N + 1, its determinant vanishes;

M = 2N + 1 : detA = detAT = det(−A) = (−1)2N+1 detA = −detA.
(2.23)

If, on the other hand, the matrix is even dimensional, the determinant can
be written as the complete square of a homogeneous M/2th order polynomial
of the matrix elements. This polynomial is known as the Pfaffian.

M = 2N : detA = (PfA)2. (2.24)

Its definition and further properties follow below.

The Pfaffian is a homogeneous polynomial of the matrix elements

The polynomial is defined in the following way. Consider the partitions of the
indices {1, 2, . . . , 2N} into pairs, without regard to order,

α = {(j1,m1), (j2,m2), · · · , (jn,mn)}, (2.25)

with jn < mn for every n = 1, . . . , N , and j1 < j2 < . . . < jN . We can regard
each partition as a permutation,

πα =

[
1 2 3 4 · · · 2n− 1 2n
i1 j1 i2 j2 · · · in jn

]
. (2.26)

The Pfaffian is

Pf(A) =
∑
α∈Π

sgn(πα)ai1,j1ai2,j2 · · · ain,jn . (2.27)

Important properties

We list some important properties of the Pfaffian, which are easy to prove or
are detailed in the notes by Haber.

For a block-diagonal matrix, we have

A1 ⊕A2 =

[
A1 0
0 A2

]
; (2.28)

Pf(A1 ⊕A2) = Pf(A1)Pf(A2). (2.29)

For an arbitrary 2N × 2N matrix B,

Pf(BABT ) = det(B)Pf(A). (2.30)
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The Pfaffian is related to the normal form

The Householder transformations are normally used to bring a real symmetric
matrix to a tridiagonal form. They are conjugations by suitably chosen orthog-
onal matrices Pj , each has determinant −1. See the note attached.

Take a real and skew-symmetric matrix A.

P2N . . . P2P1AP1P2 . . . P2N = Atri, (2.31)

where

Atri =



0 λ1 0 0 . . . 0
−λ1 0 λ2 0 . . . 0

0 −λ2 0
. . . . . .

...
. . . 0

. . .

0
. . . 0 λN−1

...
... −λN−1 0


(2.32)

It can easily be shown that the Pfaffian of such a matrix is the product of half
of the λ,

Pf(Atri) = λ1λ3 . . . λN−1. (2.33)

Using the property in Eq. (2.30) above,

Pf(A) = det(P1) det(P2) . . . det(P2N )Pf(Atri) = λ1λ3 . . . λN−1. (2.34)

2.4 Pfaffian of the Bogoliubov-de Gennes Hamil-
tonian is the ground state parity

2.5 Exercises

Express the Hamiltonian in the Majorana basis. Show that in the simple cases
a) ∆ = t = 0 and b) µ = 0, ∆ = ±µ the Hamiltonian can be diagonalized easily.
What are the independent fermionic operators d?


