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Non-Abelian statistics and topological quantum
information processing in 1D wire networks
Jason Alicea1*, Yuval Oreg2, Gil Refael3, Felix von Oppen4 and Matthew P. A. Fisher3,5

The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies
most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum
information non-locally. Here we establish that a key operation—braiding of non-Abelian anyons—can be implemented using
one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles
known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be
meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p+ ip
superconductor. We propose experimental set-ups that enable probing of theMajorana fusion rules and the efficient exchange
of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that
benefits from physical transparency and experimental feasibility.

The experimental realization of a quantum computer ranks
among the foremost outstanding goals in physics and has
traditionally been hampered by decoherence. In this regard

topological quantum computing holds considerable promise, as
here one embeds quantum information in a non-local, intrinsically
decoherence-free fashion1–6. A toy model of a spinless, two-
dimensional (2D) p + ip superconductor nicely illustrates the
key ideas. Vortices in such a state bind exotic particles known
as Majorana fermions, which cost no energy and therefore
generate ground state degeneracy. Because of the Majoranas,
vortices exhibit non-Abelian braiding statistics7–11: adiabatically
exchanging vortices noncommutatively transforms the system from
one ground state to another. Quantum information encoded in this
ground state space can be controllably manipulated by braiding
operations—something the environment finds difficult to achieve.

Despite this scheme’s elegance, finding suitable ‘hardware’
poses a serious challenge. Although most effort has focused on
the quantum Hall state at filling fraction10,12 ⌫ = 5/2, numerous
realistic alternative routes to generating non-Abelian topological
phases have recently appeared13–20. Among these, two groups21,22
recognized that one-dimensional (1D) semiconducting wires
can be engineered, relatively easily, into Kitaev’s23 topological
superconducting state supporting Majorana fermions. Motivated
by this exciting possibility, we examine the prospect of exploiting
1Dwires for topological quantum computation.

The suitability of 1D wires for this purpose is far from obvious.
Manipulating, braiding, and realizing non-Abelian statistics of
Majorana fermions are all central to topological quantum computa-
tion (althoughmeasurement-only approaches sidestep the braiding
requirement5). Whereas Majorana fermions can be transported,
created, and fused by gating a wire, braiding and non-Abelian statis-
tics pose serious puzzles. Indeed, braiding statistics is ill-defined in
1D because particles inevitably ‘collide’ during an exchange. This
problem can be surmounted in wire networks, the simplest being
a T-junction formed by two perpendicular wires. Even in such
networks, however, non-Abelian statistics does not immediately
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follow, as recognized by Wimmer and colleagues24. For example,
non-Abelian statistics in a 2D p+ ip superconductor is intimately
linked to vortices binding the Majoranas10,11. We demonstrate that,
despite the absence of vortices, Majorana fermions in semicon-
ducting wires exhibit non-Abelian statistics and transform under
exchange exactly like vortices in a p+ip superconductor.

We further propose experimental setups ranging from minimal
circuits (involving one wire and a few gates) for probing
the Majorana fusion rules, to scalable networks that permit
efficient exchange of many Majoranas. The ‘fractional Josephson
effect’13,21–23,25, along with Hassler et al.’s recent proposal26 enable
qubit readout in this setting. The relative ease with whichMajorana
fermions can be stabilized in 1D wires, combined with the physical
transparency of their manipulation, render these set-ups extremely
promising topological quantum information processing platforms.
Although braiding of Majoranas alone does not permit universal
quantum computation6,27–30, implementation of these ideas would
constitute a critical step towards this ultimate goal.

Majorana fermions in 1D wires
We begin by discussing the physics of a single wire. Valuable
intuition can be garnered from Kitaev’s toy model for a spinless,
p-wave superconductingN -site chain23:

H = �µ
NX

x=1

cx †cx �
N�1X

x=1

(t cx †cx+1 +|1|ei�cxcx+1 +h.c .) (1)

where cx is a spinless fermion operator and µ, t > 0, and |1|ei�
respectively denote the chemical potential, tunnelling strength,
and pairing potential. The bulk- and end-state structure becomes
particularly transparent in the special case23 µ = 0, t = |1|. Here
it is useful to express

cx = 1
2
e�i(�/2)(�B,x + i�A,x) (2)

with �↵,x = �↵,x
† Majorana fermion operators satisfying

{�↵,x ,�↵0,x 0} = 2�↵↵0�xx 0 . These expressions expose the defining
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in
the limit µ=0, t= |1|. Each spinless fermion in the chain is decomposed in
terms of two Majorana fermions �A,x and �B,x. Majoranas �B,x and �A,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy
end Majoranas �A,1 and �B,N as shown23. b, A spin–orbit-coupled
semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana
modes by applying an external magnetic field21,22. c, Band structure of the
semiconducting wire when B=0 (dashed lines) and B 6=0 (solid lines).
When µ lies in the band gap generated by the field, pairing inherited from
the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H = �it
N�1X

x=1

�B,x�A,x+1

Consequently, �B,x and �A,x+1 combine to form an ordinary fermion
dx = (�A,x+1 + i�B,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are �A,1 and �B,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend =
(�A,1+ i�B,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0i and |1i = dend†|0i,
where dend|0i=0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ| < 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
Z

dx

 x

†

✓
� h̄2@x 2

2m
�µ� ih̄uê ·�@x

� gµBBz

2
� z

◆
 x + (|1|ei' #x "x +h.c .)

�
(3)

The operator  ↵x corresponds to electrons with spin ↵, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and � = (� x ,� y ,� z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g � 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = 1 = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap /|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on 1
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and �k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and �k states.) Quantitatively, realizing the
topological phase requires21,22 |1|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |1| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | � mu2, |1| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing  "x ⇠ (u(ey + iex)/gµB|Bz |)@x9x and
 #x ⇠9x , with 9x the lower-band fermion operator. To leading
order, one obtains

Heff ⇠
Z

dx

9x

†

✓
� h̄2@x 2

2m
�µeff

◆
9x

+
�
|1eff|ei'eff9x@x9x +h.c .

��
(4)

whereµeff =µ+gµB|Bz |/2 and the effective p-wave pair field reads

|1eff|ei'eff ⇡
u|1|

gµB|Bz |
ei'(ey + iex) (5)

The dependence of 'eff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k = 0)=
����
gµB|Bz |

2
�

p
|1|2 +µ2

����

For |µ|<µc =
p
(gµBBz/2)2 � |1|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k)⇡ h̄v|k|, with velocity v = 2u|1|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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Figure 2 |Applying a ‘keyboard’ of individually tunable gates to the wire
allows local control of which regions are topological (dark blue) and
non-topological (light blue), and hence manipulate Majorana fermions
while maintaining the bulk gap. As a and b illustrate, sequentially applying
the leftmost gates drives the left end of the wire non-topological, thereby
transporting �1 rightward. Nucleating a topological section of the wire from
an ordinary region or vice versa creates pairs of Majorana fermions out of
the vacuum as in c. Similarly, removing a topological region entirely or
connecting two topological regions as sketched in d fuses Majorana
fermions into either the vacuum or a finite-energy quasiparticle.

length Lgate of the wire.When a given gate locally tunes the chemical
potential across |µ| = µc, a finite excitation gap Egap ⇠ h̄v⇡/Lgate
remains. (Roughly, the gate creates a potential well that supports
only k larger than ⇠⇡/Lgate.) Assuming gµB|Bz |/2 ⇠ 2|1| and
h̄u⇠ 0.1 eVÅ yields a velocity v ⇠ 104 m s�1; the gap for a 0.1 µm
wide gate is then of order 1 K. We consider this a conservative
estimate—heavy-element wires such as InSb and/or narrower gates
could generate substantially larger gaps.

Local gates allow Majorana fermions to be transported, created,
and fused, as outlined in Fig. 2. As one germinates pairs of Majorana
fermions, the ground state degeneracy increases, as does our capac-
ity to topologically store quantum information. Specifically, 2nMa-
joranas generate n ordinary zero-energy fermions, with occupation
numbers that specify topological qubit states. Adiabatically braiding
the Majorana fermions to manipulate these qubits, however, is
impossible in a single wire. Thus we now turn to the simplest
arrangement permitting exchange—the T-junction of Fig. 3.

Majorana braiding and non-Abelian statistics
First, we explore the properties of the junction where the wires in
Fig. 3 meet (see the Supplementary Information for more details).
It is instructive to view the T-junction as three segments meeting
at a point. When only one segment realizes a topological phase, a
single zero-energy Majorana fermion exists at the junction. When
two topological segments meet at the junction, as in Fig. 3a and
b, generically no Majorana modes exist there. To see this, imagine
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Figure 3 |A T-junction provides the simplest wire network that enables
meaningful adiabatic exchange of Majorana fermions. Using the methods
of Fig. 2, one can braid Majoranas bridged by either a topological region
(dark blue lines) as in a–d, or a non-topological region (light blue lines) as
in e–h. The arrows along the topological regions in a–d are useful for
understanding the non-Abelian statistics, as outlined in the main text.

decoupling the topological segments so that two nearby Majorana
modes exist at the junction; restoring the coupling generically
combines theseMajoranas into an ordinary, finite-energy fermion.

As an illustrative example, consider the setup of Fig. 3a and
model the left and right topological segments byKitaev’smodelwith
µ = 0 and t = |1| in equation (1). (For simplicity we exclude the
non-topological vertical wire in Fig. 3a.) Suppose furthermore that
�= �L/R in the left/right chains and that the fermion cL,N at site N
of the left chain couples weakly to the fermion cR,1 at site 1 of the
right chain via H0 = �0(cL,N †cR,1 +h.c .). Using equation (2), the
Majoranas at the junction couple as follows,

H0 ⇠ � i0
2
cos

✓
�L ��R

2

◆
� L
B,N�

R
A,1 (6)

and therefore generally combine into an ordinary fermion23.
An exception occurs when the regions form a ⇡-junction—
that is, when �L � �R = ⇡—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the same�L��R dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇡ junctions (which is possible
because the superconducting phases are defined with respect to
a direction in each wire; see the Supplementary Information).
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Recall from equation (5) that the spin orientation favoured by
spin–orbit coupling determines the effective superconducting phase
of the semiconducting wires. Two wires at right angles to one
another therefore exhibit a ⇡/2 phase difference, well away
from the pathological limits mentioned above. One can thus
always transport Majorana fermions across the junction without
generating spurious zero-modes.

T-junctions allow exchange of Majoranas residing on either
the same or different topological regions. Figure 3a–d illustrates
a counterclockwise braid for the former case, whereas Fig. 3e–h
illustrates the latter. Although theMajoranas cannowbe exchanged,
their non-Abelian statistics remains to be proven. Let us first recall
how non-Abelian statistics of vortices arises in a spinless 2D p+ ip
superconductor10,11. Ultimately, this can be deduced by considering
two vortices which bind Majorana fermions �1 and �2. As the
spinless fermion operators effectively change sign on advancing the
superconducting phase by 2⇡, one introduces branch cuts emanat-
ing from the vortices; crucially, a Majorana fermion changes sign
whenever crossing such a cut. On exchanging the vortices, �2 (say)
crosses the branch cut emanating from the other vortex, leading to
the transformation rule �1 ! �2 and �2 ! ��1, which is generated
by the unitary operator U12 = exp(⇡�2�1/4). With many vortices,
the analogous unitary operators Uij implementing exchange of �i
and �j donot generally commute, implying non-Abelian statistics.

Following an approach similar to Stern and colleagues34, we
now argue that Majorana fermions in wires transform exactly like
those bound to vortices under exchange, and hence also exhibit
non-Abelian statistics. This can be established most simply by
considering the exchange of two Majorana fermions �1 and �2, as
illustrated in Fig. 3a–d. At each step of the exchange, there are two
degenerate ground states |0i and |1i= f †|0i, where f = (�1+ i�2)/2
annihilates |0i. In principle, one can deduce the transformation
rule from the Berry phases �n ⌘ Im

R
dt hn|@t |ni acquired by the

many-body ground states |ni = |0i and |1i, although in practice
these are hard to evaluate.

As exchange statistics is a universal property, however, we are
free to deform the problem to our convenience provided the energy
gap remains finite. As a first simplification, because the semicon-
ductor Hamiltonian and Kitaev’s model in equation (1) can be
smoothly connected, let us consider the case where each wire in the
T-junction is described by the latter. More importantly, we further
deform Kitaev’s Hamiltonian to be purely real as we exchange �1,2.
The states |0i and |1i can then also be chosen real, leading to an
enormous simplification: although these states still evolve nontriv-
ially the Berry phase accumulated during this evolution vanishes.

For concreteness, we deform the Hamiltonian such that µ < 0
and t = 1 = 0 in the non-topological regions of Fig. 3. For the
topological segments, reality implies that the superconducting
phases must be either 0 or ⇡. It is useful to visualize the sign
choice for the pairing with arrows as in Fig. 3. (To be concrete,
we take the pairing |1|ei�cj cj+1 such that the site indices increase
moving rightward/upward in the horizontal/vertical wires; the case
� = 0 then corresponds to rightward/upward arrows, whereas
leftward/downward arrows indicate �= ⇡.) To avoid generating ⇡
junctions, when two topological segments meet at the junction, one
arrow must point into the junction while the other must point out.
With this simple rule in mind, we see in Fig. 3 that although we
can successfully swap theMajoranas while keeping theHamiltonian
real, we inevitably end up reversing the arrows along the topological
region. In other words, the sign of the pairing has flipped relative to
our initial Hamiltonian.

To complete the exchange we must then perform a gauge trans-
formation which restores the Hamiltonian to its original form. This
can be accomplished by multiplying all fermion creation operators
by i; in particular, f † = (�1 � i�2)/2! if † = (�2 + i�1)/2. It follows
that �1 ! �2 and �2 ! ��1, which the unitary transformation
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Figure 4 | Experimental set-ups that allow the probing of non-Abelian
statistics and Majorana-fermion fusion rules. a, Example of a
semiconductor wire network which allows for efficient exchange of many
Majorana fermions. Adjacent Majoranas can be exchanged as in Fig. 3,
whereas non-adjacent Majoranas can be transported to the lower wire to
be similarly exchanged. b, Minimal set-up designed to detect the non-trivial
Majorana fusion rules. Majoranas �1,2 are first created out of the vacuum.
In the left path, �2 is shuttled rightward, and Majoranas �3,4 always
combine to form a finite-energy state which is unoccupied. In the right
path, �3,4 are also created out of the vacuum, and then �2 and �3 fuse with
50% probability into either the vacuum or a finite-energy quasiparticle. The
Josephson current flowing across the junction allows the deduction of the
presence or absence of this extra quasiparticle.

U12 = exp(⇡�2�1/4) generates as in the 2D p+ ip case. (Note that
one could alternatively multiply all fermion creation operators by
�i instead of i to change the sign of the pairing, which would lead
to the slightly different transformation �1 !��2 and �1 ! �2. The
ambiguity disappears if one exchanges theMajoranas while keeping
the superconducting phases fixed as one would in practice; see the
Supplementary Information for a detailed discussion.) We stress
that this result applies also in the physically relevant case where gates
transport the Majoranas while the superconducting phases remain
fixed; we have merely used our freedom to deform the Hamilto-
nian to expose the answer with minimal formalism. Furthermore,
because Fig. 3e–h also represents a counterclockwise exchange, it is
natural to expect the same result for this case. The Supplementary
Information analyses both types of exchanges from a comple-
mentary perspective (and when the superconducting phases are
held fixed), confirming their equivalence. There we also establish
rigorously that in networks supporting arbitrarily many Majoranas
exchange is implemented by a set of unitary operatorsUij analogous
to those in a 2D p+ ip superconductor. (The Methods section out-
lines the analysis.) Thus the statistics is non-Abelian as advertised.

Discussion
The keyboard of gates shown in Fig. 2 and the T-junction of Fig. 3
provide the basic elements allowing manipulation of topological
qubits in semiconductingwires. In principle, a single T-junction can
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support numerous well-separated Majorana modes, each of which
can be exchanged with any other. (First, create many Majoranas
in the horizontal wire of the T-junction. To exchange a given
pair, shuttle all intervening Majoranas down to the end of the
vertical wire and then carry out the exchange using the methods of
Fig. 3.) However, networks consisting of several T-junctions—such
as the set-up of Fig. 4a—enable more efficient Majorana exchange.
In the figure, all adjacent Majorana fermions can be immediately
swapped using Fig. 3, whereas non-adjacent Majoranas can be
shuttled down to the lower wire to be exchanged. This ‘ladder’
configuration straightforwardly scales up by introducing extra
‘rungs’ and/or ‘legs’.

As Fu and Kane suggested in the topological insulator context13,
fusing Majorana fermions across a Josephson junction provides a
readout method for the topological qubit states. We illustrate the
physics with the schematic set-up of Fig. 4b, which extends the
experiments proposed in refs 21,22 to allow the Majorana fusion
rules to be directly probed. Here a semiconducting wire bridges
two s-wave superconductors with initial phases 'L/R i; we assume
1'i ⌘ 'L

i � 'R i 6= ⇡. Three gates drive the wire from an initially
non-topological ground state into a topological phase. Importantly,
the order in which one applies these gates qualitatively affects the
physics. As we now discuss, only in the left path of Fig. 4b can the
qubit state at the junction be determined in a singlemeasurement.

Consider first germinating Majorana fermions �1 and �2 by
applying the left gate. Assuming fA = (�1 + i�2)/2 initially costs
finite energy as �1 and �2 separate, the system initializes into a
ground state with fA unoccupied. Applying the central and then
right gates shuttles �2 to the other end (see the left path of Fig. 4b).
As a narrow insulating barrier separates the superconductors,
an ordinary fermion fB = (�3 + i�4)/2 arises from two coupled
Majoranas �3,4 at the junction. Similar to equation (6), the energy
of this mode is well-captured by21–23 HJ ⇠ i✏ i�3�4 = ✏ i(2fB†fB �1),
where ✏ i = �cos(1'i/2) with non-universal �. The system has been
prepared in a ground state, so the fB fermion will be absent if ✏ i > 0
but occupied otherwise.

Suppose we now vary the phase difference across the junction
away from its initial value to1'. The measured Josephson current
(see Supplementary Information for a pedagogical derivation)
will then be

I = 2e
h̄

dE
d1'

= e�
h̄
sgn(✏ i)sin(1'/2)+ I2e (7)

where E is the ground-state energy and I2e denotes the usual
Cooper-pair-tunnelling contribution. The first term on the right
reflects single-electron tunnelling originating from the Majoranas
�3,4. This ‘fractional’ Josephson current exhibits 4⇡ periodicity in
1', but 2⇡ periodicity in the initial phase difference1'i.

The right path in Fig. 4b yields very different results, reflecting
the nontrivial Majorana fusion rules. Here, after creating �1,2, one
applies the rightmost gate to nucleate another pair �3,4. Assuming
fA and fB defined as above initially cost finite energy, the system
initializes into the ground state |0,0i satisfying fA/B|0,0i = 0.
Applying the central gate then fuses �2 and �3 at the junction.
To understand the outcome, it is useful to re-express the ground
state in terms of fA 0 = (�1 + i�4)/2 and fB 0 = (�2 + i�3)/2. In this
basis |0,0i = (|00,00i � i|10,10i)/

p
2, where f 0

A,B annihilate |00,00i
and |10,10i = f 0

A
†fB 0†|00,00i. Following our previous discussion, fB 0

acquires finite energy at the junction, lifting the degeneracy between
|00,00i and |10,10i. Measuring the Josephson current then collapses
the wavefunction with 50% probability onto either the ground
state, or an excited state with an extra quasiparticle localized at
the junction. In the former case equation (7) again describes the
current, whereas in the latter case the fractional contribution simply
changes sign.

In more complex networks, such as that of Fig. 4a, fusing the
Majoranas across a Josephson junction—and in particular measur-
ing the sign of the fractional Josephson current—similarly allows
qubit readout. Alternatively, the interesting recent proposal of
Hassler et al.26 for reading qubit states via ancillary non-topological
flux qubits can be adapted to these setups (and indeedwas originally
discussed in terms of an isolated semiconducting wire26).

To conclude, we have introduced a surprising new venue for
braiding, non-Abelian statistics, and topological quantum infor-
mation processing—networks of one-dimensional semiconducting
wires. From a fundamental standpoint, the ability to realize non-
Abelian statistics in this setting is remarkable. Perhaps even more
appealing, however, are the physical transparency and experimen-
tal promise of our proposal, particularly given the feats already
achieved in ref. 35. Although topological quantum information
processing in wire networks requires much experimental progress,
observing the distinct fusion channels characteristic of the two paths
of Fig. 4b would provide a remarkable step en route to this goal.
And ultimately, if braiding in this setting can be supplemented
by a ⇡/8 phase gate and topological charge measurement of four
Majoranas, wire networks may provide a feasible path to universal
quantum computation6,27–30.

Methods
In the Supplementary Information we provide a rigorous, systematic derivation of
non-Abelian statistics of Majorana fermions in wire networks, thus establishing
a solid mathematical foundation for the results obtained in the main text. As the
analysis is rather lengthy, here we briefly outline the approach. We first define the
many-body ground states in the presence of arbitrarily many Majorana fermions
in an arbitrary wire network. We then establish three important general results
that greatly facilitate the derivation of non-Abelian statistics. (1) If two Majoranas
are exchanged without disturbing any other Majoranas in the network, all of these
other Majoranas simply ‘factor out’ in the sense that their presence in no way
affects how the degenerate ground states transform. (2) If we know how a given
pair of Majoranas transforms under exchange in some minimal setting, then the
same transformation holds when arbitrarily many extra Majoranas are introduced,
provided they are far from those being exchanged. These first two properties are
rather natural and follow from the locality of the Majorana wavefunctions. (3) The
transformation of the degenerate ground states under exchange (up to an overall
non-universal phase) can be deduced solely by understanding how the Majorana
operators transform. This provides an enormous simplification, as it distills the
problem down to understanding the behaviour of the single-body Majorana
operators being braided.

It follows from these results that to understand non-Abelian statistics in
wire networks composed of trijunctions, it suffices to deduce how the Majorana
operators transform under the two types of braids shown in Fig. 3.We subsequently
analyse these exchanges (when the superconducting phases are held fixed, as would
be the case in practice) and show that the operators transform similarly to
vortices in a 2D p+ ip superconductor, thereby establishing non-Abelian statistics.
Interestingly, the picture we develop in the Supplementary Information closely
resembles Ivanov’s construction for non-Abelian statistics of vortices, despite their
absence in wire networks. Very crudely, as the Majorana fermions move along
the network to be exchanged, the effective p-wave superconducting phases they
‘feel’ vary, in loose analogy to what happens when Majorana fermions bound to
vortices braid one another.

It is also interesting to note that it is not only the clockwise versus
counterclockwise nature of the braid that determines how the Majorana operators
transform, unlike in a 2D p+ ip superconductor. In addition to the handedness, the
superconducting phases of the wires forming the junction also play a critical role in
governing the outcome of an exchange. For example, a counterclockwise exchange
with a given set of superconducting phases can have the same effect as a clockwise
exchange when the superconducting phases are modified. Thus, wire networks
feature more available ‘knobs’ that one can tune to control how an exchange
impacts qubit states, whichmay have useful applications.
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I. PROPERTIES OF THE T-JUNCTION

Here we investigate in greater detail the properties of the
junction in Fig. 1 (repeated from the main text for clarity)
where the three wire segments meet. In particular, we are in-
terested in the energy splittings that arises due to the interac-
tions between the Majorana fermions when they are brought
close together at a T-junction. There are three cases to con-

FIG. 1: A T-junction allows for adiabatic exchange of two Majorana
fermions bridged by either a topological region (dark blue lines) as
in (a)-(d), or a non-topological region (light blue lines) as in (e)-(h).
Transport of Majorana fermions is achieved by gates as outlined in
Fig. 2 of the main text. The arrows along the topological regions
in (a)-(d) are useful for understanding the non-Abelian statistics as
outlined below and in the main text.

sider, corresponding to the situations where one, two, or all
three of the wire segments emanating from the junction reside
in a topological superconducting state. It is conceptually sim-
plest to address each case by viewing the T-junction as com-
posed of three independent wire segments as in Fig. 2, which
initially decouple from one another. In this limit a single Ma-
jorana exists at the end of each topological segment. One can
then straightforwardly couple the wire segments at the junc-
tion and explore the fate of the Majorana end states.
Suppose that the phases of the -wave pair fields in each

region are as shown in Fig. 2 [in the semiconduc-
tor wire context, these phases correspond to in Eq. (6) of
the main text]. To be precise, if the wires are described by
a lattice model, we define these phases relative to a pairing
term such that the site indices increase moving
rightward in the horizontal wires and upward in the vertical
wire. A similar convention can be employed in the semicon-
ductor wire context. Now suppose we allow single-electron
tunneling between the ends of each segment, with amplitude
as shown schematically in Fig. 2. (Pairing between elec-

trons residing at the ends of each region is also generally al-
lowed, but does not change any qualitative results below and
will therefore be neglected.) For convenience we will assume
that the tunneling strength is weak compared to the bulk gaps
in the wires, which will allow us to focus solely on the Ma-
jorana end states; our conclusions, however, are more general
and do not require this assumption.
In the setup of Fig. 2(a) with only one topological region,

the Majorana is qualitatively unaffected by the coupling
to the non-topological wires. At most its wavefunction can
be quantitatively modified, but it necessarily remains at zero
energy. This reflects the familiar topological protection of a
single isolated Majorana mode in a gapped system.
With two of the three wires topological as in Fig. 2(b), the

end Majoranas and generally combine into an ordinary
finite-energy fermion, except with fine-tuning. To a good ap-
proximation, the Majoranas couple through a Hamiltonian1–3

(1)

This was discussed in the main text in the context of two wires
described by Kitaev’s toy model in a particular limit, but is
qualitatively rather general—the periodicity in
has a topological origin1. For instance, end Majoranas in two
topological semiconducting wires coupled through an ordi-
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FIG. 2: T-junction viewed as three wire segments with -wave super-
conducting phases . The ends of each segment are coupled
via tunneling with amplitude as shown. (a) When only one seg-
ment is topological, the tunneling can not destroy the Majorana
at the junction. (b) Two topological regions meeting at the junction
leads to the end Majoranas and generally combining into an
ordinary, finite-energy fermion, unless the topological wires form a
junction. (c) When all the three wires are topological, the Majo-

ranas generally combine to form a finite-energy fermion and
a single topologically protected Majorana. All three Majoranas re-
main at zero energy only when all three wire segments form mutual
junctions.

nary region exhibit the same phase dependence as above2,3.
Equation (1) demonstrates that and remain zero-energy
modes only when the topological wires form a junction, i.e.,
when .

Finally, consider the case shown in Fig. 2(c) where all three
segments are topological. Here the Majoranas couple

via

(2)

Note the sine function determining the coupling between
and , which arises because of the conventions we chose for
defining above. Recall that to make the problem well-
defined, we needed to define the phases with respect to a par-
ticular direction in each wire; otherwise there is an ambigu-
ity of in the definition, since for instance

. We defined the phases such that the site in-
dices increase upon moving rightward or upward in the wires.
But this implies that the site indices in both the left and bot-
tom wires increase upon moving towards the junction, in con-
trast to all other pairs of wires. It follows that the splitting
of and is proportional to

. Hence with our conventions a junction
between these two regions actually corresponds to the case

.
The Hamiltonian implies that all remain zero-

energy modes only when , where
all pairs of wires form mutual junctions. (This remains
true even when coupling to the ordinary gapped states is in-
cluded.) Aside from this fine-tuned limit, however, al-
ways supports one zero-energy Majorana mode and one or-
dinary finite-energy fermion. As an illustration, consider the
case and , so that only the horizontal
wires form a junction. Here the Hamiltonian simplifies to

(3)

It follows that the linear combination remains
a zero-energy Majorana mode, while and
combine into a finite-energy fermion. While here the zero-
energy Majorana carries weight only on the horizontal wires
which formed the junction, in general its wavefunction will
have weight on all three segments.
As we braid Majorana fermions using the methods de-

scribed in the main text, it is imperative that we avoid gen-
erating spurious zero-modes at the T-junction. The above dis-
cussion implies that we are safe in this regard so long as we
avoid junctions. Fortunately, the semiconducting wires we
considered naturally avoid such situations, since two wires at
right angles to one another exhibit effective -wave phases
that differ by as discussed in the main text.

II. WAVEFUNCTION APPROACH TOMAJORANA
FERMION EXCHANGE

Below we explore in much greater detail the exchange of
Majorana fermions in a 1D wire networks. We once again em-
phasize the nontrivial nature of the problem since non-Abelian
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statistics in a 2D superconductor is typically understood
as arising because of superconducting vortices. One might
worry that the Majoranas in the wires perhaps bind vortices in
the neighboring parent -wave superconductor, but this is cer-
tainly not the case. This becomes apparent when one recalls
how the effective superconductingHamiltonian for the wire is
derived (see, e.g., Ref. 4). Namely, one considers a Hamil-
tonian of the form , where
and describe the wire and superconductor in isolation,
and encodes single-electron tunneling between the two.
Upon integrating out the gapped superconducting degrees of
freedom assuming a uniform pair field , one arrives at an
effective Hamiltonian for the wire which includes proximity
induced pairing terms. Any phase variations in the parent su-
perconductor’s order parameter are ruled out by assumption,
yet Majoranas can nevertheless exist in the wires. Thus devel-
oping a physical picture for the exchange in this setting is an
extremely important issue.
Our aim here is to provide greater rigor and a complemen-

tary picture for the discussion presented in the main text for
how the Majoranas transform under exchange. We will begin
by constructing the many-body wavefunctions for a general
1D wire network supporting an arbitrary number of Majorana
fermions. We will then establish some important general re-
sults for braiding that rely on minimal assumptions about the
underlyingHamiltonian. Here there will be some overlap with
the approach followed by Bonderson et al.5, who recently
revisited the issue of non-Abelian statistics in the fractional
quantum Hall context. Following this general analysis, we
will consider again the exchange of Figs. 1(a)-(d) and explore
how the Majoranas transform when the braid is implemented
by keeping the superconducting phases fixed, as would be the
case in practice. Next, we will turn to an analysis of the ex-
change outlined in Figs. 1(e)-(h) and show that, as claimed
in the main text, this braid transforms the Majoranas in an
identical fashion to the braid of Figs. 1(a)-(d). In two sub-
sequent sections, we will further consider some special exam-
ples where the full many-bodywavefunctions can be analyzed
during the exchange, allowing us to explore important issues
such as the overall phase acquired by the ground states under
braiding.

A. Construction of degenerate ground state wavefunctions

Consider a 1D wire network with well-separated, lo-
calized Majorana modes corresponding to operators
that satisfy and . By ‘well-separated’, we
mean that different Majorana wavefunctions overlap negligi-
bly with each other. Suppose moreover that the pairs
and were germinated from the vacuum. (For example, one
could start with a non-topological network, generate and
by nucleating a single topological region, then create and
by forming another far-away topological region, etc.) One

can construct fermion operators from these via

(4)

which correspond to zero-energy modes (up to corrections
which are exponentially small in the separation between Ma-
joranas). These modes give rise to degenerate ground
states which can be labeled by the occupation numbers

for the fermions. We would like to construct these de-
generate ground state wavefunctions and understand the ex-
change of Majorana fermions in 1D wire networks from this
perspective.
Let us denote the positive-energy Bogoliubov-de Gennes

quasiparticle operators by , each of which must annihilate
the ground states. As usual, the explicit form of these ground
states is nontrivial because both the Majorana operators and
represent linear combinations of the original fermion cre-

ation and annihilation operators for the 1D wire network. By
construction the wavefunction

(5)

with the vacuum of the original fermion operators and
the normalization, must constitute one of the degenerate

ground states since any clearly annihilates this state. Be-
cause we pulled and out of the vacuum, we are guar-
anteed that will be an eigenvector of with eigenvalue
.
How we label this state in terms of the occupation num-

bers is a matter of convention because there is a sign ambigu-
ity in the Majorana wavefunctions. Specifically, if is the
Majorana wavefunction corresponding to , then also
denotes a legitimateMajorana wavefunction that preserves the
relations and . As an example, suppose that
upon making some particular overall sign choices for we
find that ; we would then identify with .
Had we chosen the opposite sign for , however, we would
find instead that and identify this state with
(sending is equivalent to sending and

). We will assume for concreteness that the signs of
the Majorana wavefunctions have been chosen such that
corresponds to the ground state with , i.e.,

(6)

The ground state with can then be written

(7)

which is manifestly annihilated by all . All other ground
states can be obtained by applying creation operators to

or, equivalently, annihilation operators to the state
.

Before moving on, we note that the way we combined Ma-
joranas in Eq. (4) to construct the ordinary fermion oper-
ators was convenient because of how we assumed the Majo-
ranas were germinated, but is by no means unique. One could
always choose to combine pairs of Majoranas differently and
construct operators and ground states . The
ground states in this representation would then be related to
the ground states we defined above simply by a change of ba-
sis.
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B. General results for Majorana exchange

We now proceed to obtain some important generic results
for Majorana exchange that rely on very minimal assump-
tions about the underlying Hamiltonian for the 1D wire net-
work. Suppose that we wish to exchange and . [Below
it will prove extremely convenient to work in a basis where
the Majoranas we braid combine into an ordinary fermion.
This is the case for the basis we introduced above, since

. If instead we wanted to exchange, say,
and , one would first want to change basis and write the

ground states in terms of operators such as
and , then proceed as we outline below.]
Let be the parameter in the Hamiltonian that varies to im-
plement the exchange of and . If varies from
to during the course of the exchange, then we require
that so that the Hamiltonian returns
to its original form after the braid. (If the Hamiltonian does
not return to its original form, then we can not make rigorous
statements about how the wavefunctions transform under the
exchange.)
There are two important quantities that one must under-

stand to analyze the exchange. The first are the Berry phases
acquired by the degenerate ground states, which follow from

(8)

We have included the possibility that non-trivial off-diagonal
Berry phases occur, since a priori these need not vanish. If
we assume that the degenerate ground states return to their
precise original form at , the Berry phases encode all infor-
mation about the exchange. However, if we relax this assump-
tion (which will indeed be useful below), then we additionally
need to include the explicit changes between the initial and
final states. In general, the final ground states could represent
a nontrivial linear combination of the initial ground states, so
we write

(9)

where the subscripts denote the initial/final states.
The combination of the Berry phases and the coefficients

fully specify the outcome of the exchange.
While the problem appears daunting, a remarkable amount

of progress can in fact be made on very general grounds. We
will make only one additional assumption about the physi-
cal system. Specifically, to carry out the exchange we will
assume that only local terms in the Hamiltonian—such as lo-
cal chemical potentials—need to be modified, and that such
modifications only impact the Majoranas which are be-
ing braided. This will certainly be the case, for example, in the
eight-Majorana configuration from Fig. 4(a) of the main text;
in fact, there any pair can be exchanged without disturbing
any other Majoranas in the system. However, one is not guar-
anteed that this is always immediately possible, since there
may be intervening Majoranas that prevent and from
being so exchanged. Such cases can be treated in one of two

ways. First, one can always first transport theMajoranas in the
system (but importantly without braiding any of them) to pro-
duce an arrangement where can be directly exchanged.
Alternatively, one can always pairwise braid Majoranas in the
system until the intervening Majoranas are removed. We will
proceed below by assuming that in such cases, the prerequisite
translations or exchanges have already been carried out.

We will first demonstrate that all off-diagonal Berry phase
elements vanish trivially in the basis we have chosen, and that
the exchange depends only on the occupation number for
the fermion. This follows from our assump-
tion above that the exchange can be implemented by simply
adjusting local terms in the Hamiltonian that affect only the
regions near . Assuming all other Majoranas are well-
localized far from , their wavefunctions will be unaffected
by these local changes to the Hamiltonian (up to exponentially
small corrections). Consequently, to an excellent approxima-
tion can be assumed -independent.
In contrast, and the bulk quasiparticle operators do

depend on . Explicitly displaying the -dependence, the
ground state can then be written as

(10)

Again, all other ground states can be obtained from this by
application of and . Because are -
independent, differentiating the states with re-
spect to does not change the occupation numbers for the
corresponding zero-energy modes. It therefore follows that

(11)

One can see this relation formally by inserting the ground
states obtained from Eq. (10) into the left-hand side of the
above equation. We furthermore have

(12)

since with the above bra and ket are trivially orthog-
onal because they exhibit different fermion parity. Thus all
off-diagonal Berry phases indeed vanish, and the only possi-
bly non-zero Berry phases follow from

(13)

(14)

which manifestly depend only on . As one would intuitively
expect, the additional far-awayMajoranamodes do not impact
the outcome of the exchange of . These modes trivially
factor out in the above sense, and the exchange simply sends

for 1 or 2.
We can actually evaluate the Berry phases even further.

From Eqs. (13) and (14), we obtain the following relation:

(15)
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where on the right side the derivative acts only on . One
can always decompose as

(16)

(The right-hand side does not involve because by as-
sumption the corresponding wavefunctions have negligible
weight near and .) Inserting this expression into Eq. (15),
one finds that only the term contributes:

(17)

It is useful to isolate in Eq. (16) by considering the fol-
lowing anticommutator,

(18)

Suppose now that throughout the exchange the following stan-
dard relations hold

(19)

Note that this does not constitute an additional physical as-
sumption, but rather a convention; one can always choose the
operators in this way. The anticommutator in Eq. (18) is then

(20)

where for brevity on the right-hand side we suppressed the
dependence. The first two terms vanish trivially because

(21)

Interestingly, the last two terms in Eq. (20) also vanish (up to
exponentially small corrections) because and are local-
ized far apart from one another. (To see this explicitly, one
can expand in terms of the original fermion creation and
annihilation operators for the wire network, evaluate
in terms of this expansion, and then evaluate the anticommu-
tators.) Thus we obtain the remarkable result that as long as
Eqs. (19) hold throughout the exchange,

(22)

and the states with and 1 acquire identical Berry
phases under the exchange.
This does not imply that the exchange is trivial, since non-

trivial effects can still arise due to explicit differences be-
tween the initial and final states. Recall that by assumption
the Hamiltonian returns back to its original form after the ex-
change. Therefore we must have
and , for some unspecified phase

factors and . By choosing the bulk quasiparticle wave-
functions appropriately, we can always set without loss of
generality , though we must allow for nontrivial
since we restricted to satisfy Eqs. (19) for all . The
initial and final ground states are then related by

(23)

The most important implication of these results is that the
outcome of the exchange follows solely from the evolution of
the localized Majorana wavefunctions for , which deter-
mines . [This is true up to an overall Berry phase arising
from which, by contrast, depends additionally on the
evolution of the bulk quasiparticle states. But this contribution
is non-universal in any event as we will see later.] It is worth
emphasizing that the wavefunctions corresponding to de-
pend neither on the presence of the additional Majoranas in
the system, nor on changes to the bulk quasiparticle wave-
functions far from . This leads to a great simplification:
if we know how transform in some minimal configura-
tion, then the same transformation must hold when arbitrarily
many additional distant Majoranas are introduced by, say, nu-
cleating other topological regions into the network. Once this
is known we can determine the unitary operator that acts
on to implement their exchange. Importantly, is ba-
sis independent as it only acts on the Majorana operators, and
therefore allows one to deduce the evolution of the many-body
ground states under the exchange (up to an overall phase) in
any basis one chooses.
In the more general situation where one exchanges and
, exactly the same analysis holds when one works in a ba-

sis where one of the occupation numbers corresponds to the
ordinary fermion operator , as briefly men-
tioned at the beginning of this subsection. The implications
discussed in the preceding paragraph that follow from these
results also carry over to this more general case. We stress
that although it is easiest to draw these conclusions by choos-
ing a different basis depending on which Majoranas are being
braided, one again ultimately deduces basis-independent op-
erators that act on to implement their braid. The set
of unitary operators are sufficient to deduce how the
degenerate ground states transform in a fixed basis under ar-
bitrary exchanges (up to an overall non-universal phase); see
for example Eq. (9) in Ref. 6.
We have now distilled the problem of demonstrating non-

Abelian statistics down to that of determining how the Majo-
ranas and transform under the exchanges shown in Fig.
1. These two elementary operations alone indeed allow one to
braid arbitrary pairs of Majorana fermions in networks com-
posed of trijunctions, such as that shown in Fig. 4(a) of the
main text. We proceed now by analyzing these two cases in
turn.

C. Exchange of from Figs. 1(a)-(d)

Consider the T-junction in Fig. 1(a). As in the main text
we will describe each wire by Kitaev’s toy lattice model. (We
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FIG. 3: Lattice structure giving rise to the T-junction.

remind the reader that the experimentally realistic semicon-
ductor wire Hamiltonian for the junction can be smoothly de-
formed to this minimal model without closing the gap. We
choose to work with the latter since it is more convenient,
and are free to do so because exchange statistics is a univer-
sal property that is insensitive to details of the Hamiltonian
as long as the gap remains finite.) We take the horizontal
and vertical wires to consist of and sites as Fig.
3 illustrates, and denote the spinless fermion operators for the
horizontal and vertical chains respectively by and . For
simplicity we will take the pairing and nearest-neighbor hop-
ping amplitudes to be equal, which allows us to conveniently
express the Hamiltonian as

(24)

where we identify .
It is important to recall from the discussion below Eq. (2)

that the superconducting phases for the T-junction are only
well-defined with respect to a direction in each wire. We have
chosen to write the pairing terms above as

and similarly for the terms. The former of course equals
, so one can always equivalently refer

to the superconducting phase in the horizontal wire as with
respect to the ‘right’ direction or with respect to the
‘left’ direction. Similarly, one can label the superconducting
phase for the vertical wire as either with respect to the ‘up’
direction or with respect to the ‘down’ direction. One
can even divide up each wire into distinct regions and use a
different convention in each one. We will indeed find this use-
ful to do here. Throughout this subsection we will employ a
convention where the superconducting phases are labeled as

in the left half of the horizontal wire, in the right half,
and in the vertical wire. This will prove extremely con-
venient for describing the Majorana operators as we will see
shortly. Note also that here and in the following subsection

we will assume that and do not differ by an integer mul-
tiple of so that we avoid generating junctions during the
exchange.

In the initial configuration the vertical wire is non-
topological, while the horizontal wire is topological and thus
exhibits end-Majoranas which we would like to exchange
counterclockwise as in Fig. 1(a)-(d). Given our discussion
in the previous subsection, we will choose to satisfy the
usual relations and throughout, for in this
case we need only compare the initial and final Majorana op-
erators to deduce the outcome of the exchange (up to an over-
all non-universal phase). In the main text we already deduced
how the Majoranas transform under this exchange, but here
we will rederive this transformation rule in the case where the
superconducting phases are held fixed. In other words, we
now wish to braid by only varying , and . To
implement the exchangewe take these couplings to depend on
a parameter that varies from , corresponding to the initial
setup of Fig. 1(a), to , corresponding to the final configura-
tion of Fig. 1(d). The intermediate values will correspond
to Figs. 1(b) and (c).
We will model the initial setup at by assuming for

simplicity that , , and .
We can then read off the form of the initial Majorana operators
from Eq. (24):

(25)
(26)

since these combinations are explicitly absent from the initial
Hamiltonian. Note that the overall signs of have been
chosen completely arbitrarily above. Suppose now that we
adiabatically transport rightward and downward, leading to
the configuration of Fig. 1(b). For example, can be trans-
ported rightward one site by taking and
and varying from 0 to 1. Upon similarly transporting all
the way to site 1 of the vertical chain, at we end up
with , in the non-topological region of the hor-
izontal wire, and in the topological region
of the horizontal wire, and and . Once again,
we can then read off the Majorana operators,

(27)

(28)

where . At this point the utility of our convention for
the superconducting phases becomes clear: with this labeling
scheme, the phase factors appearing in Eqs. (25) to (28) follow
directly from the superconducting phase ‘felt’ locally by the
Majoranas.
In contrast to the overall signs of above, and the

sign of are not arbitrary since these operators evolve
adiabatically from . Since we did not transport
in this step, clearly this operator must remain invariant as we
have written. Determining the sign is, however, trickier.
One can in principle determine by tracking the evolution of
the Majorana wavefunction by explicit calculation. This brute
force approach does not providemuch insight, however, so we
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will deduce the sign by different means. Specifically, we
will ask what happens when we go from Fig. 1(a) to (b) in
a slightly deformed Hamiltonian which smoothly connects to
the one we discussed above.
Suppose that instead of the superconducting phases jump-

ing discontinuously between the horizontal and vertical wires,
the phase in the latter varied spatially from at the bot-
tom to at the top. (All the phase variation can happen
very locally near the trijunction, so long as it is smooth.) Let
us denote the Majoranas in this deformed problem by ,
which can be expressed as

(29)
(30)

where correspond to the fermion operators for the
sites where are localized at the ‘time’ of the ex-
change. The phases are simply given by the super-
conducting phases felt locally by the Majoranas, and thus ro-
tate as we transport . Upon going from Fig. 1(a) to (b),

of course remains unchanged while rotates from
to . Whether this rotation happens clockwise

or counterclockwise, however, makes all the difference: if
in the former case , then in the
latter . This follows directly
from the fact that changes sign upon shifting
by . Because of this mathematical property, it is useful
to introduce branch cuts in the space of , precisely as
in Ivanov’s construction6, so that the Majorana operators are
single-valued away from the cut but change sign when
crosses the cut. Arbitrarily, we will take the branch cut to
occur at .
If one is to avoid generating spurious zero modes at a

junction during this step (and thus smoothly connect to the
problem of interest), there is a unique orientation in which the
superconducting phase in the vertical wire can vary. Namely,
it must vary from at the bottom to at the top with-
out passing through . [To understand why going through
would generate a junction with zero modes, recall the dis-
cussion below Eq. (2), keeping in mind our labeling conven-
tions.] Consequently, rotates from at
to at , also without passing through . In Fig. 4(a)
for example, the rotation happens clockwise as shown by the
solid red line. Since the deformed problem smoothly connects
to the physical problem of interest throughout this step of the
exchange, we can now easily deduce the sign that deter-
mines : if crosses the branch cut while

otherwise.
Next, let us return to the original problem and similarly

transport leftward, producing the configuration of Fig. 1(c).
At , we again have , in the
non-topological region of the horizontal wire, and

in the topological region of the horizontal wire,
and and . The Majorana operators then evolve
to

(31)

(32)

FIG. 4: Trajectory of (a) and (b) defined in Eqs. (29)
and (30), which are the superconducting phases ‘felt’ locally by the
braided Majoranas and of the deformed Hamiltonian described
in the text. The solid red lines correspond to the trajectories obtained
for the type of exchange illustrated in Figs. 1(a)-(d), while the dashed
red lines correspond to Figs. 1(e)-(h). Because the Majorana opera-
tors depend on , we introduce a branch cut along so
that are single-valued away from the cut but change sign when
crosses the branch cut. In the exchange from Figs. 1(a)-(d), both
and always rotate by with the same orientation, and hence

only one of the two Majorana operators acquires a minus sign due to
the branch cut. In the exchange of Figs. 1(e)-(h), however, and
rotate by with opposite orientations, so either both acquire

a minus sign due to the branch cut or neither do. There is an addi-
tional minus sign though that picks upon crossing the trijunction
between Figs. 1(f) and (g), so the net result is that in both exchanges
one of the two Majoranas changes sign, just like for vortices in a 2D

superconductor. Since the deformed model and the Hamilto-
nian of interest can be smoothly connected without a gap closure, the
same is true for the original Majoranas, .

for some sign .
To determine , we again turn to a deformed problem

which provides useful insight and eschews the need for brute
force calculation. As before, we seek a companion Hamil-
tonian with Majoranas defined as in Eq. (29) and (30),
where the superconducting phase felt locally by
varies smoothly as shuttles leftward. This can be achieved
by deforming the original Hamiltonian so that the supercon-
ducting phase in the horizontal wire varies spatially from
on the left, to in the center where it meets the vertical wire,
and then to on the right. There is again a unique orienta-
tion in which this variation can take place if this problem is to
smoothly connect with the original one—the superconducting
phase must never pass through to avoid generating a
junction in the topological region during this step. Given how
the horizontal wire’s superconducting phase varies in the de-
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formed Hamiltonian, it follows that must rotate from
at to at in an orientation that passes through . In
the example of Fig. 4(b), this implies that rotates clockwise
as shown by the solid red line, crossing the branch cut (wavy
line) in the process. We can now trivially extract the sign
using the fact that the deformed Hamiltonian and the physi-
cal Hamiltonian of interest connect smoothly to one another
throughout this step: if crosses the branch cut
but otherwise.
Going back to the original problem, let us complete the ex-

change by transporting up and to the right, producing the
configuration of Fig. 1(d). The Hamiltonian returns to its orig-
inal form specified above, and the Majoranas evolve to

(33)

(34)

for some sign .
One can deduce using the same approach employed to

find . We analogously introduce a deformed Hamiltonian
where the superconducting phase varies spatially in the ver-
tical wire from at the bottom to at the top, without
passing through to avoid generating zero modes at a
junction. The Majorana then feels a local superconducting
phase which rotates from at to at with an
orientation that avoids passing through . In the example
of Fig. 4(a), this rotation happens clockwise as indicated by
the solid red line. Using continuity of the deformed prob-
lem and the physical problem we immediately deduce that

if crosses the branch cut during this step and
otherwise.

At the end of the exchange we find that
and . In Fig. 4 only the phase

crosses the branch cut as one can see from the solid red
lines; in this case and so that one
obtains and . More generally, it follows
from our discussion above that and both always rotate
by with the same orientation, and thus necessarily only one
of the two crosses the branch cut. Thus we obtain the result
that the exchange sends

(35)
(36)

with some sign that depends on , and where one chooses
the branch cut. (We can always get rid of by absorbing this
sign into the definition of .) Thus we have derived the trans-
formation rule for the exchange of Fig. 1(a)-(d) in a comple-
mentary manner to that of the main text.

It is worth briefly contrasting these two approaches. In this
subsection we studied the exchange of twoMajorana fermions
when the superconducting phases in the wires were kept fixed.
We deduced how theMajoranas transformed here by consider-
ing a companion problem where the superconducting phases
were allowed to change, but only locally in the vicinity of
the trijunction. This approach required more extensive for-
malism but had the virtue of adhering closer to the physical
situation for experiment. It is also interesting that the pic-
ture that emerged is remarkably similar to Ivanov’s picture

for exchange of vortices in a 2D superconductor6, de-
spite the absence of vortices in the wire network. In the main
text we instead deformed the Hamiltonian such that the su-
perconducting phases in each segment of the network varied
globally during the exchange so as to keep the Hamiltonian
real. At the end, however, the superconducting order param-
eter changed sign, so to return the Hamiltonian back to its
original form we reversed the sign of the pairing by sending

. This method had the virtue that all
Berry phases explicitly vanished while the Majoranas were
transported, allowing one to get to the answer very directly
and with minimal formalism. We stress that these two ap-
proaches are not unrelated, and it is interesting to note the con-
nection between the deformed companion problem introduced
in this section and the deformedHamiltonian considered in the
main text. In the former case the superconducting phases felt
by the Majoranas varied smoothly as they moved across
the network, and as a result the phases smoothly rotated
by during the course of the braid. The latter case effectively
corresponds to an extreme version of this wherein acquire
the entire rotation only at the very end of the exchange.

D. Exchange of from Figs. 1(e)-(h)

We will now analyze the counterclockwise exchange of
Figs. 1(e)-(h), where and reside on different topologi-
cal regions of the network. The same general approach ap-
plied in the previous subsection will be applied here. As be-
fore, the T-junction will be described by in Eq. (24), the
Majoranas will be defined so that and
throughout, and their exchange will be implemented by tak-
ing the couplings , and dependent on a parame-
ter . We will hold and fixed, but will again deduce the
evolution of the Majoranas by considering a deformed com-
panion Hamiltonian where the superconducting phases vary
locally near the trijunction. It will be convenient to employ a
slightly different labeling convention for the superconducting
phases here compared to the previous subsection: we will la-
bel these by in the left half of the horizontal wire, in
the right half, and in the vertical wire. The ‘time’ will
now vary from to , respectively corresponding to the se-
tups of Figs. 1(e) and (h); the intermediate values and
will similarly correspond to Figs. 1(f) and (g). For simplicity,
as above we evolve the Hamiltonian such that the couplings
at each of these ‘times’ are given by and

in the non-topological regions, while
and in the topological regions of the network.
Suppose that at the Majoranas and reside at sites
and of the horizontal wire, respectively; the operators

can then be written

(37)
(38)

[We can safely ignore the other two Majoranas in Fig. 1(e),
since they do not evolve at all during the exchange of and
thus ‘factor out’; see again Sec. II B for a rigorous discussion.
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We can even include a coupling between the left and right
ends of the horizontal wire if desired to fuse these additional
Majoranas.] When increases to , we arrive at the setup of
Fig. 1(f) and the Majoranas evolve to

(39)

(40)

for some sign . Notice that with our modified labeling
scheme, the phase factors appearing in the above operators
again simply follow from the superconducting phases felt lo-
cally by each Majorana.
One can deduce by the usual procedure applied in the

previous subsection. We introduce a deformed Hamiltonian
where the superconducting phase in the vertical wire varies
spatially from at the bottom to at the top, without pass-
ing through to avoid generating spurious zero modes at
a junction during this step. We define the Majoranas
for this deformed Hamiltonian as in Eqs. (29) and (30); the
phases are again precisely the smoothly varying su-
perconducting phases felt locally by . In particular, as
shuttles rightward and then downward, it feels a supercon-

ducting phase that rotates from at to at in
an orientation that avoids passing through . In the exam-
ple from Fig. 4(a), rotates from to counterclock-
wise, as the dashed red line indicates. Because the deformed
Hamiltonian and our original Hamiltonian can be smoothly
connected throughout this step without closing a gap, we can
immediately deduce the sign : if crosses the
branch cut while otherwise.
Returning to the original Hamiltonian, suppose we now

transport leftward, generating the configuration of Fig.1(g).
The Majoranas then take the form

(41)

(42)

for some sign . Deducing is trickier than the other signs
becausemidway through this step sits exactly at the trijunc-
tion, with all three emanating wire segments being topologi-
cal. To analyze this step we begin by introducing a deformed
Hamiltonian where the superconducting phase in the horizon-
tal wire varies spatially from from on the left, to in the
center, to on the right. To avoid generating unwanted
zero modes during this step, we require that the superconduct-
ing phase varies in this fashion without passing through . As
the Majorana moves leftward and approaches the junction,
this operator evolves according to Eq. (30) with the local su-
perconducting phase varying from to with-
out crossing .
Eventually sits exactly at the trijunction, and here we

need to proceed with care. Let us denote this point by
. First, we note that in our deformed Hamiltonian the hor-

izontal wire forms a junction at . Because the vertical
wire is also topological, however, no additional zero modes
are generated as discussed around Eq. (3). As we also dis-
cussed there, because of the junction the wavefunction for

at has no weight on the vertical wire. We explicitly
find that here evolves to

(43)

(This can be deduced by considering only the sites
of the horizontal wire and site of the vertical wire.)

The minus sign appearing in front of is absolutely crucial.
Because of this extra minus sign, as moves off of the tri-
junction and proceeds leftward, it will subsequently evolve
according to

(44)

where corresponds to the superconducting phase felt
locally by during the latter half of this step. Thus feels
a local superconducting phase which varies smoothly
from at to at in an orientation that passes through

, but additionally picks up an extra minus upon crossing
the trijunction. In the example from Fig. 4(b), rotates
clockwise as shown by the dashed red line. Using continuity
between the deformed and original Hamiltonians, we can now
conclude that if crosses the branch cut during this
step while otherwise.
Finally, let us return to the original Hamiltonian and com-

plete the exchange by transporting up and to the right. Thus
we arrive at the setup of Fig. 1(h), and the Majoranas become

(45)

(46)

for some sign that we can determine by the usual means.
Introduce a deformedHamiltonian where the superconducting
phase in the vertical wire varies from at the bottom to

at the top without passing through to avoid additional
zero modes. As the Majorana for this companion problem
shuttles up and to the right, it feels a local superconducting
phase which varies from at to at
with precisely this orientation. In the example of Fig. 4(a),
rotates from to counterclockwise, as the dashed red
line shows. By continuity, we immediately find that
if crosses the branch cut during this step while
otherwise.

The final and initial Majorana operators are related by
and . For the ex-

ample shown in Fig. 4 we obtain and ,
so here and . More generally, both and
always rotate by with opposite orientations for this type

of exchange, and so either and both pick up a minus
sign because of the branch cuts or neither do. The Majorana
always acquires an additional minus sign, however, upon

crossing the branch cut, so we find as before that

(47)
(48)

The sign again depends on , and how one orients the
branch cuts, but is the same for the exchange of Figs. 1(a)-
(d) and that of Figs. 1(e)-(h). Thus as one would intuitively
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expect, both kinds of counterclockwise braids transform the
Majoranas in an identical fashion, despite the fact that in one
case the Majoranas are initially bridged by a topological re-
gion while in the other they initially reside on disconnected
topological segments. This proves our claim in the main text
that these exchanges are equivalent.

E. Implications for non-Abelian statistics

Consider now a network composed of some arbitrary ar-
rangement of trijunctions, such as that of Fig. 4(a) from the
main text. The elementary braids of Fig. 1 constitute the basic
operations needed to exchange Majorana fermions in this set-
ting. Putting together all the results obtained so far in this sec-
tion, exchanging counterclockwise any two Majorana modes
and without disturbing any other Majoranas in the sys-

tem (apart from, perhaps, trivial translations) sends

(49)
(50)
(51)

The sign depends on the initial sign choices for the op-
erators , the superconducting phases in the system, and
how one orients the branch cuts as discussed above. Once
these are specified, can be deduced for any exchange using
the simple rules outlined in the previous two subsections. It
is worth emphasizing an interesting feature of wire networks
here—since depends on the arrangement of superconduct-
ing phases in the wires, how the Majoranas transform is not
simply determined by the handedness of the exchange. This
is quite different from the situation for vortices in a 2D
superconductor. The additional freedom afforded by wire net-
works could in principle be useful for topological quantum
information processing applications.
If denotes the operator that implements the counter-

clockwise braid discussed above, we have

(52)

[One can easily apply the analysis of the previous subsections
to the clockwise analogue of the exchanges of Figs. 1(a)-(d)
and Figs. 1(e)-(h). This of course leads to the result that the
clockwise braid of and is generated by .]
Non-Abelian statistics for the wire network now follows from
the fact that

(53)

for .
The route followed here for demonstrating non-Abelian

statistics was very different from that of the main text, where
we allowed the superconducting phases to vary so as to keep
the Hamiltonian purely real during the exchange. We re-
marked in the main text that while the latter route leads to
an ambiguity in how the Majoranas transform, this ambiguity
disappears if one implements the exchange while keeping the

superconducting phases fixed as we have done here. Since the
above sign depends on both the initial sign conventions for
the Majorana operators and the branch-cut orientations, one
may be tempted to dispute this claim. However, we stress that
the dependence on sign and branch-cut conventions reflects
freedom rather than ambiguity.

To appreciate this subtle distinction, first note that the
choice of initial sign conventions for the Majoranas and
branch-cut orientations are not actually independent. This
can be clearly seen with a specific example. Consider a
Majorana fermion operator defined at some initial time by

, where is a sign we are free to fix,
is some ordinary fermion operator, and is the superconduct-
ing phase felt locally by the Majorana. Because the operator
so defined is -periodic in , as before it is convenient to
introduce a branch cut. If one orients the cut along ,
then should be restricted to the interval ; on the
other hand, if the cut orients along , then one should
take . For superconducting phases between
and 0 (modulo ), the operator in the former case differs
by an overall minus sign relative to the latter case. But there
was already an overall unspecified sign in the definition of
above, so changing the branch cut orientation can always be

compensated by sending .
Suppose then that one fixes the branch cut orientations and

the overall signs multiplying each Majorana operator in the
system, which can always be done to one’s convenience. The
analysis carried out in this section then determines unambigu-
ously how the operators transform under any sequence of sub-
sequent exchange. By contrast, there is always an additional
overall minus sign ambiguity for each exchange when one
uses the method of the main text. As explained in detail in
the following section, this arises because one varies the super-
conducting phases in that approach. It is in this sense that the
ambiguity encountered in the main text is resolved here.
Finally, we note in passing that while trijunctions alone are

sufficient to allow for non-Abelian statistics, it is of course
possible to consider more general networks featuring some
arbitrary number of wires meeting at a junction. The general
results established in Sec. II B still apply here, though addi-
tional cases can arise beyond those considered in Fig. 1. As
an example, suppose one fabricated a ‘+’ junction where four
wire segments meet at a point. If the entire junction is topo-
logical, then four Majoranas will generically appear. If we
exchange a given pair, which of the braided Majoranas ac-
quires a minus sign can not be immediately deduced from our
results above, though this case can be analyzed exactly along
the lines of how we studied the exchanges of Fig. 1. Our aim
is not to be completely exhaustive here, however, so we do not
pursue such cases further in this work.

III. MANY-BODY BERRY PHASE CALCULATION FOR A
SYSTEMWITH TWOMAJORANA FERMIONS

Above we demonstrated that non-Abelian statistics prevails
in wire networks. Next, we explicitly analyze the evolution
of the full many-body ground states under exchange in some
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tractable cases. This will both support the previous results,
and allow us to calculate the overall Berry phase acquired by
the ground states upon braiding Majoranas. We begin here
with the simplest case and return to the initial setup in Fig.
1(a). To exchange the Majoranas as in Fig. 1(a)-(d),
here we will follow the strategy adopted in the main text and
keep the Hamiltonian purely real during this exchange (until
the very end, when we will allow the Hamiltonian to become
complex). Again, this assumption has the virtue that the wave-
functions can then also be chosen real, so that in spite of their
complex evolution the Berry phase accumulated as the Majo-
ranas are transported vanishes identically.

A. Berry phase in the real-Hamiltonian gauge

As in Sec. II C we will describe the T-junction by the lattice
Hamiltonian in Eq. (24). We will revert back for the rest of
the Supplementary Material to the labeling scheme where the
superconducting phase is denoted by in the horizontal wire
and in the vertical wire (with respect to the ‘right’ and ‘up’
directions, respectively). For convenience we will deform the
Hamiltonian describing the initial setup of Fig. 1(a) to the fol-
lowing:

(54)

with and . Here we have set the horizontal wire’s
superconducting phase to and chemical potential to

, and turned off the pairing and hopping in the vertical
wire. The Hamiltonian then exhibits only real matrix elements
as desired. We graphically denote the initial superconducting
phase in the horizontal wire by the rightward-pointing arrow
in Fig. 1(a) (a leftward-pointing arrow would indicate a phase
of , which would also keep the Hamiltonian purely real).

The first term in implies that all fermions in the ver-
tical wire will be absent in the initial ground states, while the
second can be recognized as Kitaev’s toy model in the special
limit where , . The end Majorana fermions for
the horizontal wire take on a particularly simple form in this
limit, allowing the initial wavefunctions to be easily obtained.
To do this, we follow Kitaev1 and decompose in terms of
Majorana fermions via

(55)

which allows the Hamiltonian to be written as

(56)

The zero-energy end Majorana fermions and
which do not appear in can be combined into an ordinary
zero-energy fermion

(57)

while the gapped bulk states are captured by operators

(58)

In terms of , becomes

(59)

The end Majoranas give rise to two degenerate initial
ground states whose evolution we are interested in: which

annihilates and . The former can be writ-
ten , where denotes the vac-
uum of and fermions. After some algebra, the normal-
ized ground states can be written explicitly as

(60)

Note that we have multiplied and by overall phase
factors to make each wavefunction purely real. Although the
ground states have different fermion parity, both yield the
same average particle number

(61)

corresponding to half-filling of the horizontal chain.
Let us now transport the Majorana fermions as outlined

in Figs. 1(a)-(d), keeping the Hamiltonian (and ground state
wavefunctions) real and avoiding spurious zero-energymodes
along the way. For example, can be transported rightward
one site by adding the following term to ,

(62)

(with ) and varying from 0 to 1. As usual, as we
so transport and we must avoid having two neighboring
topological regions whose superconducting phases differ by
, for in this case a pair of ‘accidental’ zero-energy Majorana
modes appears at the junction. It is therefore useful to employ
arrows as shown in Figs. 1(a)-(d) to signify the sign of the
pairing in each topological region. Two inward or two out-
ward arrows meeting at the junction correspond to a junc-
tion and must be avoided. Figures 1(a)-(d) illustrate that in
accordance with this simple rule, we can indeed swap the po-
sitions of and while keeping the Hamiltonian and wave-
functions purely real, consequently acquiring no Berry phases
whatsoever in the process. However, the arrows and hence the
sign of the pairing in the topological region unavoidably re-
verse, as seen by comparing Figs. 1(a) and (d). Thus we have
not yet completed an exchange in the usual sense.
At this stage we have adiabatically evolved the Hamiltonian

to

(63)
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corresponding to with the sign of the pairing reversed, and
the wavefunctions to

(64)

[Modulo phase factors, these wavefunctions can be obtained
by sending in Eqs. (60).] To complete the exchange,
let us now return the Hamiltonian to its original form by adia-
batically rotating the superconducting phase in the topological
region from back to 0. The Hamiltonian then involves com-
plex matrix elements, which implies that Berry phases need
no longer vanish here. As we will see, however, the Berry
phase contributions for this final step can be easily calculated.
To this end, consider

(65)

Upon varying from 0 to 1, the superconducting phase rotates
by such that and as
desired. The ground states of are

(66)

Importantly, and so that
the wavefunctions evolve smoothly throughout. Note also that
we have inserted an arbitrary phase factor above. We will
select this phase momentarily such that the Berry phase ac-
quired by each wavefunction during this final stage also van-
ishes. The outcome of the exchange is then simpler to inter-
pret, since one simply compares the initial states and
with the final states and .
Using Eqs. (66), one can now compute the Berry phases;

we find

(67)

(Off-diagonal components such as vanish triv-
ially due to the different fermion parity of the ground states.)

This result is quite sensible given that both wavefunctions de-
scribe on average Cooper pairs whose phase rotates by
. We now choose

(68)

so that the Berry phases vanish as desired. Only the explicit
relative phases between the initial and final wavefunctions re-
main. For the factors of cancel in Eqs. (66),
yielding

(69)

Crucially, the ground state acquires an additional phase
factor of relative to under the exchange. Neglecting an
overall phase factor, the unitary operator that generates this
relative phase can be written

(70)

where we have identified and . This
coincides with the expression obtained in the main text by
somewhat different means, and is identical to the unitary op-
erator generating the exchange of vortices in a spinless
superconductor6.
Three important comments are warranted here. First, it is

worth emphasizing again that in practice one need not perform
any rotation of the superconducting phases to exchangeMajo-
ranas or realize non-Abelian statistics, as we have already seen
in the preceding subsections. We analyzed the problem in this
way solely because the many-body wavefunctions and Berry
phases could be computed very easily in this approach. In the
physical situation appropriate for quantumwires, the effective
-wave superconducting phases in the horizontal and vertical
wires will differ by , and to implement the exchange one
only needs to apply local gate voltages to exchange the Ma-
joranas. One can also compute the Berry phases in this situa-
tion (which we will indeed do momentarily in a simple case),
though the calculations are much more complicated.

Second, while a specific overall phase has been calculated
in Eqs. (69), this phase is certainly non-universal. It depends
both on the precise way in which one exchanges the Majo-
ranas as well as details of the Hamiltonian, and is therefore
not particularly meaningful in this context. For instance, had
we rotated the superconducting phase from back to 0 be-
fore moving all the way to the right in Fig. 1(d), a different
overall phase would emerge. (As we found earlier, the average
number of particles encoded in the wavefunctions when the
rotation takes place affects the Berry phase and would be dif-
ferent in this case.) Furthermore, as we demonstrate below the
overall phases depend on the specific form of the Hamiltonian
even when the superconducting phases remain fixed; see Eqs.
(72) and (96). This result is perhaps not too surprising—the
overall phases follow from many-bodywavefunctions that en-
code not only topological information, but also non-universal,
high-energy physics.
Third, to obtain the result in Eq. (70) we chose in Eq. (65) to

rotate the superconducting phase counterclockwise from to
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0 in the final step of the exchange. Had we alternatively cho-
sen to rotate the phase in a clockwise fashion [which would
occur if we sent in Eq. (65)], the ground state
would pick up a relative phase of instead of under the
exchange compared to . Interesting physics underlies the
ambiguity. To understand this, first note that the cases where
one rotates the superconducting phase from to 0 counter-
clockwise versus clockwise differ by an overall rotation by
. In any superconductor, rotation of the superconducting

phase by effectively changes the sign of all fermion opera-
tors; in particular, here such a rotation sends .
Remarkably, exchanging and twice (with the same ori-
entation) while keeping the superconducting phases fixed also
sends . In other words, braiding all the
way around is equivalent—modulo an overall phase—to
a braidless operation wherein the positions of the Majoranas
remain fixed but the superconducting phase advances by .
Consequently, if under a counterclockwise exchange picks
up a relative phase of compared to , then subsequently
rotating the superconducting phase by effectively converts
this into a clockwise exchange with acquiring a relative
phase of compared to .
We should emphasize that precisely the same conclusions

apply to a 2D spinless superconductor featuring two
vortices. In that case, however, this observation is less inter-
esting. With more than two vortices, rotating the overall phase
of the 2D order parameter by changes the sign of
all the Majoranas, which is not very useful. In wire networks,
however, by fabricating a series of Josephson junctions along
the wires one can in principle wind the superconducting phase
only along the region supporting a particular pair of Majo-
ranas, thus effectively implementing pairwise braids in a po-
tentially useful—though not topologically protected–way. We
also note that such “braidless exchanges” were recently dis-
cussed in a rather different setting by Teo and Kane7.

B. The many-body Berry phase with constant
superconducting phases

The sign ambiguity of the phase acquired by the state
discussed above is completely removed if one transports the
Majoranas while leaving the superconducting phases fixed
(as one would do in practice). To demonstrate this we now
consider a four-site model, with the geometry of Fig. 3 with

, described by the following Hamiltonian:

(71)

As before, correspond to sites on the horizontal chain,
while couples to , forming the vertical bond of the T-
junction. The and terms represent nearest-neighbor
tunneling and pairing with equal amplitude, while
denote the chemical potentials (we will never need a chem-
ical potential for and so have excluded such a term above).

Importantly, the superconducting phases have been set to—
and will remain fixed at—zero on the horizontal bonds and

on the vertical bond, similar to the physical situation
for semiconducting wires as discussed in the main text.
We wish to evolve the coupling constants in Eq. (71) to

implement an exchange of two Majorana modes as shown in
Figs. 1(a)-(d). It is simplest to carry out the exchange piece-
wise in six stages. We construct the many-body ground states
such that they are continuous between steps and compute the
Berry phases separately within each step. Although in prin-
ciple the wavefunctions can be obtained analytically, the ex-
pressions are algebraically very complicated and not terribly
illuminating. Thus we will only outline the calculation here.

In the first step, the couplings evolve according to
, , , , and ,

with and varying from 0 to 1. In the initial configu-
ration with , Majorana fermions and respectively
reside on sites 1 and 3 of the horizontal chain, realizing a con-
figuration analogous to Fig. 1(a). We define
such that the initial ground state annihilated by has odd
fermion parity, while the even-parity initial ground state is

. Ramping up shuttles rightward to
site 2. Since throughout this step, the Hamiltonian is
real and the wavefunctions can thus also be chosen real. The
Berry phase therefore vanishes trivially here.
In the second step, the couplings evolve according to

, , , , and .
Varying from 0 to 1 now shuttles downward, realizing a
configuration analogous to Fig. 1(b). In the third and fourth
steps we similarly evolve the couplings to transport from
site 3 to site 2, and then from site 2 to site 1, leading to the
configuration of Fig. 1(c). The fifth step transports upward
to site 2. Note that in steps 2 through 5, the Hamiltonian ex-
hibits complex matrix elements, and non-zero Berry phases
thus emerge. Finally, in step 6 moves rightward to site
3, completing the exchange. In the last step the Hamiltonian
can once again be chosen real, but we explicitly introduce -
dependent phase factors into the ground states [as we did in
Eqs. (66)] such that the Berry phase from step 6 exactly can-
cels the Berry phase contributions from steps 2 through 5. All
the physics is then contained in the relative phases between
the initial and final wavefunctions; we obtain

(72)

Unlike the case above where we rotated the superconducting
phases during the exchange, here the relative phase factors
have been determined unambiguously. Most importantly, the
ground state picks up an extra phase factor of compared
to as expected.

IV. EVOLUTION OF MANY-BODY GROUND STATES
UNDER EXCHANGE IN A TOYMODEL EXHIBITING

FOUR MAJORANAMODES

For completeness let us also examine how the many-body
ground states transform under an exchange of the type out-
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FIG. 5: Exchange of two Majorana fermions separated by a non-
topological region. Here we envision transporting the Majoranas
while keeping the Hamiltonian purely real. The superconducting
phase in the topological regions can then only take on two values, 0
or , which we indicate by arrows above. Unlike in the exchange of
Figs. 1(a)-(d), here we can exchange Majorana fermions while keep-
ing the Hamiltonian purely real, maintaining the gap, and returning
the Hamiltonian back to its original form (i.e., without reversing the
sign of the pairing). As explained in the text, this does not mean that
the exchange is trivial; indeed, the Majoranas transform just as they
do in the braid of Figs. 1(a)-(d).

lined in Figs. 1(e)-(h), where there are fourMajoranas present.
We would in particular like to address here the following puz-
zle. Suppose we proceed as we did earlier for the exchange
of Figs. 1(a)-(d) and transport while keeping the Hamil-
tonian purely real to avoid Berry phase accumulation. It is
once again instructive to view the sign of the pairing in the
topological regions with arrows as displayed in Figs. 5(a)-(d).
As the figure illustrates, it is now possible to exchange and

without reversing the sign of the pairing in the process. In
other words, we can keep the Hamiltonian purely real, swap
the locations of the Majoranas, and return the Hamiltonian
back to its original form—without closing a gap. One might
therefore worry that this type of exchange is trivial, but this is
not so. This can be easily deduced from the perspective of the
Majorana operators using the preceding results from this sec-
tion: upon crossing the trijunction acquires an additional
minus sign, and so under the exchange we get the usual re-
sult that and , for some sign . From
the perspective of the wavefunctions, how then do the ground
states possibly acquire the relative phase factor of that fol-
lows from this transformation?
The subtlety arises because there are now four Majorana

fermions rather than two, and in this case one gets less mileage
out of keeping the Hamiltonian real during the exchange. To
illustrate the point, let denote the Majoranas we wish to
exchange, and the stationary Majoranas of Figs. 1(e)-(h).
Defining

(73)

we see that there are now two degenerate ground states in each

fermion parity sector: which both and annihilate,
, , and .

Reality of the Hamiltonian does not imply that these four
ground states can each be chosen real. Indeed, we provide
an example below where this is clearly not possible. Rather,
this condition only guarantees reality of specific linear com-
binations of these ground states, which in general can vary as
the exchange takes place. In other words, the reality condition
does not preclude the phases of the above ground states from
evolving nontrivially during the exchange (see below for an
explicit example). Drawing conclusions about the exchange
from this route therefore requires a more detailed analysis than
in the case with only two Majorana fermions. To remedy this
issue, one might be tempted to modify the setup of Figs. 1(e)-
(h) by connecting the horizontal wire into a loop, then fusing
and so that only the two Majoranas which we exchange

remain. One will quickly discover, however, that in this case
the positions of and can not be swapped while keeping
the Hamiltonian real and all other excitations gapped. Specif-
ically, in the process one necessarily ends up with a config-
uration similar to Fig. 5(c), except with two arrows pointing
either into or out of the junction; that is, one can not avoid
junctions here.
Let us consider now a toy problem that provides an illustra-

tive minimal setting in which the wavefunctions during such
an exchange can be analyzed explicitly. Specifically, we ex-
amine the four-site setup shown in Fig. 6 and described by the
following purely real Hamiltonian:

(74)

with , , and . In spite of the small
number of sites, this Hamiltonian supports four zero-energy
Majorana modes for any values of , , and . To get in-
tuition here, it is useful to think of site 1 as forming a junc-
tion between sites 2 and 3. This gives rise to two Majorana
modes which are independent of the parameters appearing in
Eq. (74). One of these, , resides at site 1:

(75)

The other, , resides on sites 2 and 3:

(76)

The locations of the second pair of Majoranas, and , de-
pend on , , and . We will vary these parameters so
as to carry out an exchange of and in a manner that is
analogous to the exchange of Figs. 1(e)-(h).
To help establish a connection between the setup of Fig.

1(e) and the present four site-problem, imagine first forming
a loop out of the horizontal wire so that the two topological
regions connect. The outer Majoranas of Fig. 1(e)—which
are analogous to in our setup—can then be generated by
forming a junction in the topological region. The four-site
problem shrinks this junction to the smallest possible size.
The other two Majoranas will initially be separated by an
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FIG. 6: Minimal four-site setup that supports four Majorana modes
(only and are shown for clarity). The Hamiltonian is chosen
so as to exchange and as sketched in (a)-(d), mimicking the
exchange of Fig. 1(e)-(h) in a tractable setup. Solid lines denote
bonds with non-zero pairing whose sign is indicated by the arrows.

unpaired region, similar to the non-topological segments con-
necting in Fig. 1(e). We carry out their exchange piece-
wise in three stages to reduce the algebraic complexity of the
problem. Care will be taken to ensure that the wavefunctions
and operators defined below evolve continuously in between
each of these stages.

(I) In the first stage, we evolve the Hamiltonian by taking

(77)

(with ) and varying from 0 to 1. Initially when ,
and are situated at sites 2 and 3, respectively, as Fig. 6(a)

illustrates. Ramping up to 1 shuttles to site 4, leading to
the configuration of Fig. 6(b). More precisely, are given
by

(78)

(79)

where we have defined . The finite-energy
fermion operators which annihilate the ground states are

(80)

(81)

Now define and analogously to Eqs. (73). Suppress-
ing the dependence for notational simplicity, the four de-

generate ground states are then

(82)

where is annihilated by , and . With the
above definitions and some time to carry out the algebra, one
can obtain these ground states for arbitrary . When
leading to the initial configuration shown in Fig. 6(a), the

wavefunctions are

(83)

Clearly none of these can be made real by introducing overall
phase factors (though one can readily verify that a purely real
basis does exist by considering linear combinations of these
states). When and we arrive at the configuration shown
in Fig. 6(b), the wavefunctions evolve to

(84)

(II) For the second stage of the exchange, we evolve the
Hamiltonian according to

(85)

Here varying from 0 to 1 leaves unchanged but adiabati-
cally transports from site 3 to site 2, leading to the config-
uration of Fig. 6(c). Defining , the Majorana
fermion operators at this stage obey

(86)

(87)
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while the gapped quasiparticle operators are

(88)

(89)

(Note that there is some freedom for how one implements this
step. The expression for does not depend on the specific
parametrization of and above. If desired, one can first
turn on while keeping fixed, and then turn off . The
end result in either case is the same.) The wavefunctions can
again be obtained for arbitrary after some tedious algebra.
In particular, when bringing the system to the setup of
Fig. 6(c), the wavefunctions evolve to

(90)

Notice how the phase factors in the wavefunctions evolve non-
trivially in passing from Eqs. (84) to (90), despite the reality
of the Hamiltonian.
(III) To conclude the exchange, we now choose

(91)

and again vary from 0 to 1. In this final step, remains
unchanged while moves adiabatically to site 3 as in Fig.
6(d). The Majorana operators now obey

(92)

(93)

with , and the gapped quasiparticle opera-
tors are

(94)

(95)

Computing the ground states as before, we obtain the expected

result that the final and initial ground states are related by

(96)

That is, the ground states with an fermion
present acquire a phase factor of under the exchange. Up
to an overall non-universal phase factor, this transformation is
generated by the unitary operator , as obtained
earlier.
To close this section, we remark that one may object that in

obtaining this result we have simply compared the initial and
final states. Since the above wavefunctions are not real, one
may in particular ask whether the exchange is tainted by Berry
phases. It is not—it is always possible to simply change to a
real basis by suitably superposing these wavefunctions, and
in such a basis the absence of Berry phases is manifest. The
exchange indeed is governed solely by the difference between
initial and final states.

V. DERIVATION OF THE FRACTIONAL JOSEPHSON
EFFECT IN A SIMPLEMODEL

For pedagogical purposes, we will review here the ‘frac-
tional Josephson effect’ originally predicted by Kitaev1 and
discussed by other authors in the context of 1D wires2,3 and
other topological systems8–11. We will examine this effect in a
minimal setup where all calculations can be explicitly carried
out, although the qualitative aspects of the physics are more
universal. Consider two topological superconducting wires
forming a Josephson junction as shown schematically in Fig.
7(a). The phases of the -wave order parameters are taken to
be in the left/right wires, which are coupled by a weak
(compared to the gap in each wire) electron tunneling term at
the junction. The full Hamiltonian reads

(97)

where describe the left/right regions and represents
the electron tunneling term coupling the wires. For compu-
tational simplicity, we model the left and right regions as -
site chains described by Kitaev’s toy model with and

. In this case we have

(98)

for , along with a tunneling term

(99)

When , two Majorana fermions reside at the junction;
turning on generally fuses these to an ordinary finite-
energy quasiparticle state. We wish to compute the zero-bias
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FIG. 7: (a) Schematic of the Josephson junction formed by two
topological wires with -wave superconducting phases . The
wires couple at the junction through an electron tunneling term with
strength . (b) Bogoliubov-de Gennes spectrum as a function of

for the effective Hamiltonian in Eq. (108) cho-
sen to describe the junction. Only the solid lines denote physically
distinct states. The states centered around represent
ordinary bulk quasiparticles, while the state near zero energy repre-
sents the quasiparticle formed when the two end Majoranas at the
junction fuse. The energy and hence Josephson current correspond-
ing to the latter exhibit periodicity in . The ordinary
bulk quasiparticle states, however, contribute only to the usual -
periodic Josephson effect.

current flowing across the junction,

(100)

in the ground state as well as the excited state where this quasi-
particle state is occupied.

We proceed by first diagonalizing in the usual way.
Writing and then defining

, one obtains

(101)

It is useful to group the end Majorana fermions residing at the
junction into an ordinary fermion operator via

(102)

The tunneling term, which we will treat as a perturbation, can
then be written

(103)

with

(104)
(105)
(106)

Rewriting the expression for the current in this basis, one ob-
tains the familiar relation

(107)

Notice that the fermion operators and
essentially drop out from the problem—the full Hamiltonian
separately conserves the fermion number for each of these
states and they do not contribute to the Josephson current.
Thus for the purposes of evaluating the current, the prob-
lem maps onto a simpler Hamiltonian involving only ,

, and . In terms of
and , this effective Hamiltonian
becomes

(108)

where now

(109)

Applying degenerate perturbation theory to obtain the ener-
gies of the , , and fermions to , we obtain

(110)

The operators correspond to states that evolve from
due to the tunneling perturbation. Their energies to

the desired order are

(111)

(112)

We can now evaluate the Josephson current in the ground
state, as well as the excited state where the finite-energy quasi-
particle formed from the fused Majoranas is occupied. Equa-
tions (107) and (110), along with the above energies, yield

(113)

where the sign corresponds to the current obtained when
the fermion is unoccupied/occupied. The second term
represents the standard Josephson current that is periodic
in . This contribution reflects Cooper-pair tunneling and
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thus arises at second-order in perturbation theory. More inter-
estingly, the first term exhibits periodicity and has a topo-
logical origin since it arises solely from the Majoranas fused
at the junction. This contribution reflects a first-order process
corresponding to single-electron tunneling, which is possible
at zero bias because the Majoranas form a zero-energy state at
the junction when .
It is interesting to observe from Eq. (111) that the

fermions also pick up a first order correction to their energy
from . Thus one can view each of these states as individ-
ually contributing both - and -periodic Josephson cur-
rents. Their -periodic contributions exactly cancel one an-
other, however, so that only the fused Majoranas contribute
to this effect. Mathematically, this can be understood from
the particle/hole-symmetric spectrum of the Bogoliubov-de
Gennes Hamiltonian in Eq. (108). This is plotted versus

in Fig. 7(b). Here only the solid lines denote physi-
cally distinct states since those with energy and are not
independent. As one turns on the tunneling strength from 0,
the ordinary fermionic states that begin at energy split with
opposite sign at first order, and only yield a net change in en-
ergy at second order in . Thus they contribute only to the
usual -periodic Josephson current. The state of affairs for
the end state which begins at zero energy is very different—its
energy also shifts at first order, but its ‘partner’ which shifts
in the opposite direction does not represent a physically dis-
tinct state. It therefore produces an observable -periodic
Josephson current.
Finally, it is useful to ask whether the crossings in the spec-

trum of Fig. 7(b) at are stable. In the case of the ordi-
nary quasiparticle states, they are certainly not. For in-
stance, adding a weak superconducting pairing between
and at the junction lifts the crossings near in the
figure. When this happens, there is no sense in which the bulk
quasiparticle states even individually contribute a -periodic
current. The crossing at , however, is stable provided
the Majoranas at the outer ends of the wires do not overlap
with those at the junction1. (The location of the crossing2
though need not occur exactly at ). This can be un-
derstood as follows. As long the as occupation number of the
fermion corresponding to the outer Majorana end states re-
mains fixed, the ground states at and have
different fermion parity. In the former case in
the ground state while in the latter . If this cross-
ing could be removed, then one would be able to adiabatically
evolve from 0 to while remaining in the ground state,
but this can not happen unless the outer end Majoranas trans-
fer a fermion to the junction. It is useful to keep this in mind
when considering the left path in Fig. 4(b) of the main text,
where crosses the junction. At fixed phase , the
ground state is always accessible here, precisely because
overlaps with the fused Majoranas at the junction during
this process. However, when resides at the far right end of
the wire, then (neglecting residual overlap between the Ma-
joranas) the ground state will no longer accessible when the
phase difference changes by . This explains why the frac-
tional Josephson current in Eq. (9) of the main text exhibits
periodicity in the initial phase difference , but pe-

riodicity in .

VI. EXPERIMENTAL PROSPECTS

To conclude, we briefly remark on the experimental
prospects for the proposal laid out in this manuscript. Many of
the required experimental feats have been demonstrated previ-
ously, which is highly encouraging; these include generating
proximity-induced superconductivity in an InAs wire12 and
patterning of multiple gates on the micron scale (see, e.g., Ref.
13). Of course formidable hurdles nevertheless remain in the
road to manipulating Majorana fermions in wire networks as
we have outlined. A sizable Zeeman gap in the wire needs
to be demonstrated while preserving superconductivity. More
precisely, the Zeeman gap should not only exceed the induced
pairing in the wire—a prerequisite to entering the topologi-
cal phase2,3—but should ideally be large enough that one can
stabilize the topological phase over long distances even in the
presence of realistic disorder-induced chemical potential fluc-
tuations. Such disorder effects are particularly important to
keep in mind, and will be commented on below. Effectively
gating the wire to drive the system between an ordinary and
topological phase poses another outstanding challenge, partic-
ularly given the presence of a nearby superconductor. Form-
ing wire arrays with Josephson junctions to allow both manip-
ulation and readout of the quantum information encoded in the
Majoranas also presents a nontrivial fabrication problem.
Despite the challenges, we believe there are several reasons

for optimism. First, recent theoretical works have demon-
strated that the desired topological phase can be stabilized
even when electrons occupy multiple subbands, thus greatly
expanding the parameter space in which the Majoranas can
form14–16. This is particularly significant given that it es-
chews the need to gate the wires all the way into the lowest-
subband limit, which may be difficult in practice. To obtain
large Zeeman gaps, one can pattern wires along the narrow
sides of thin-film superconductors. Doing so would reduce
the detrimental orbital effect on superconductivity and thereby
widen the window of tolerable magnetic fields. One should
also note that wires featuring heavy elements such as InSb
already yield exceptionally large -factors so that relatively
weak fields can induce substantial gaps. Zeeman splittings
can be enhanced further by introducingmanganese impurities;
this route is especially promising in II-VI semiconductoring
wires where manganese enters isoelectronically and therefore
does not seriously degrade mobility. Regarding the impor-
tant issue of disorder-induced chemical potential fluctuations,
we note that the presence of multiple gates may allow one to
actively counter this effect. Provided the chemical potential
typically varies on length scales which exceed the width of
the gates, one can in principle ‘iron out’ these fluctuations by
calibrating the gates appropriately.
Finally, we emphasize that there are a number of spectacu-

lar milestones that could be achieved along the way to realiz-
ing our full proposal. First, detecting the Majoranas even in
an isolated wire would already constitute a phenomenal dis-
covery. Probing the nontrivial fusion channels characteristic
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of Majorana fermions would be another remarkable develop-
ment. Notably, this feat requires a relatively simple setup in-
volving only a single wire extended across a Josephson junc-
tion and coupled to only a few gates [recall Fig. 4(b) from
the main text]. Once these achievements are established, the

observation of non-Abelian statistics—which has long been
somewhat of a ‘holy grail’ in physics—may not be far off.
And perhaps in the long run, wire networks might serve as the
backbone of a universal quantum computer.
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