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These lecture notes provide an introduction to some of the main concepts of topo-
logical insulators, a branch of solid state physics that is developing at a fast pace. They
are based on a one-semester course for MSc and PhD students at the Eötvös University,
Budapest, which the authors have been giving since 2012.

Our aim is to provide an understanding of the core topics of topological insula-
tors – edge states, bulk topological invariants, bulk–boundary correspondence – with
as simple mathematical tools as possible. We restricted our attention to one- and two-
dimensional band insulators. We use noninteracting lattice models of topological insu-
lators, and build these up gradually to arrive from the simplest one-dimensional case
(the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal
invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each
case we introduce the model first, discuss its properties, and then generalize. The pre-
requisite for the reader is quantum mechanics and not much else: solid state physics
background is provided as we go along.

Since this is an introduction, rather than a broad overview, we try to be self-
contained and give citations to the current literature only where it is absolutely nec-
essary. For a broad overview, including pointers to the original papers and current
topics, we refer the reader to review articles and books in the Introduction.

Supporting material for these lecture notes in the form of ipython notebooks will
be made available online.

Despite our efforts, the book inevitably contains typos, errors, and less comprehen-
sible explanations. We would appreciate if you could inform us of any of those; please
send your comments to janos.asboth@wigner.mta.hu.
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Introduction

The band theory of electric conduction was one of the early victories of quantum me-
chanics in the 1920s. It gave a simple explanation of how some crystalline materials
are electric insulators, even though electrons in them can hop from one atom to the
next. In the bulk of a band insulator, the electrons occupy eigenstates that form energy
bands. In a band insulator, there are no partially filled bands: completely filled bands
are separated by an energy gap from completely empty bands, the gap represents the
energy cost of mobilizing electrons. In contrast, materials with partially filled bands
are conductors, where there are plane wave states available to transmit electrons across
the bulk at arbitrarily low energy. Although we now know of situations where band
theory is inadequate (e.g., for Mott insulators), it remains one of the cornerstones of
solid states physics.

The discovery of the Quantum Hall Effect (1980) has shown that the simple division
into band insulators and metals is not the end of the story, not even in band theory. In
the quantum Hall effect, a strong magnetic field confines the motion of electrons in the
bulk, but the same field forces them into delocalized edge states on the surface. A two-
dimensional metal in strong magnetic field is thus an insulator in the bulk, but conducts
along the surface, via a discrete number of completely open edge state channels (in the
language of the Landauer–Büttiker formalism). The number of edge state channels was
linked to the Chern number, a topological invariant of the occupied bands (1982).

Over the last twenty years, theoretical progress over artificial systems has shown
that the external magnetic field is not necessary for an insulator to have robust con-
ducting edge states: instead, the nontrivial topology of the occupied bands is the cru-
cial ingredient. The name topological insulator was coined for such systems, and their
study became a blossoming branch of solid state physics. Following the theoretical
prediction (Bernevig, Hughes and Zhang, 2006 [5]), electronic transport measurements
confirmed that a thin layer of HgTe is a topological insulator (König et al, 2007 [21]).
Since that time, a host of materials have been shown to be three-dimensional topologi-
cal insulators, and thin films and quantum wires shown to be two- and one-dimensional
topological insulators [2].

The intense theoretical interest in topological insulators has led to signature results,
such as the so-called periodic table of topological insulators [29], which shows that
similarly to phase transitions in statistical mechanics, it is the dimensionality and the
basic symmetries of an insulator that decide whether it can be a topological insulator
or not. Although it was derived by different ways of connecting topological insulators
of various dimensions and symmetries (so-called dimensional reduction schemes), the
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mathematically rigorous proof of the periodic table is still missing.
The field of topological insulators is very active, with many experimental chal-

lenges and open theoretical problems, regarding the effects of electron-electron inter-
action, extra crystalline symmetries, coupling to the environment, etc.

Literature

To get a quick and broad overview of topological insulators, with citations for relevant
research papers, we recommend the review papers [17, 25, 7]. For a more in-depth
look, there are already a few textbooks on the subject (by Bernevig and Hughes [4],
by Shen [30], and one edited by Franz and Molenkamp [10]). To see the link between
momentum-space topology and physics in a broader context, we direct the reader to a
book by Volovik[34].

There are also introductory courses on topological insulators with a broad scope.
We recommend the lectures by Charles Kane (the video recording of the version given
at Veldhoven is freely available online), and the online EdX course on topology in
condensed matter by a group of lecturers, with the corresponding material collected at
topocondmat.org.

These lecture notes

Our aim with this set of lecture notes is to complement the literature cited above: we
wish to provide a close look at some of the core concepts of topological insulators with
as simple mathematical tools as possible. Using one-and two-dimensional noninteract-
ing lattice models, we explain what edge states and what bulk topological invariants
are, how the two are linked (this is known as the bulk–boundary correspondence), the
meaning and impact of some of the fundamental symmetries.

To keep things as simple as possible, throughout the course we use noninteracting
models for solid state systems. These are described using single-particle lattice Hamil-
tonians, with the zero of the energy corresponding to the Fermi energy. We use natural
units, with h̄ = 1 and length measured by the lattice constant.
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Chapter 1

The Su-Schrieffer-Heeger (SSH)
model

* We take a hands-on approach and get to know the basic concepts of topological
insulators via a concrete system: the Su-Schrieffer-Heeger (SSH) model of polyacety-
lene. This model describes spinless fermions hopping on a one-dimensional lattice with
staggered hopping amplitudes. Using the SSH model, we introduce the concepts of
single-particle Hamiltonian, the difference between bulk and boundary, chiral symme-
try, adiabatic equivalence, topological invariants, and bulk–boundary correspondence.

We take a hands-on approach and get to know the basic concepts of topological
insulators via a concrete system: the Su-Schrieffer-Heeger (SSH) model. This de-
scribes spinless fermions hopping on a one-dimensional lattice with staggered hopping
amplitudes. Using the SSH model, we introduce the concepts of single-particle Hamil-
tonian, the difference between bulk and boundary, chiral symmetry, adiabatic equiva-
lence, topological invariants, and bulk–boundary correspondence.

1.1 The SSH Hamiltonian

The Su-Schrieffer-Heeger (SSH) model describes electrons hopping on a chain (one-
dimensional lattice), with staggered hopping amplitudes, as shown in Fig. 1.1. The

Figure 1.1: Geometry of the SSH model. Filled (empty) circles are sites on sublattice
A (B), each hosting a single state. They are grouped into unit cells: the n = 6th cell is
circled by a dotted line. Hopping amplitudes are staggered: intracell hopping v (thin
lines) is different from intercell hopping w (thick lines). The left and right edge regions
are indicated by blue and red shaded background.

1



2 CHAPTER 1. THE SU-SCHRIEFFER-HEEGER (SSH) MODEL

chain consist of N unit cells, each hosting two sites, one on sublattice A, and one on
sublattice B. Interactions between the electrons are neglected, and so the dynamics of
each electron is described by a single-particle Hamiltonian,

Ĥ = v
N

∑
m=1

(
|m,B〉〈m,A|+h.c.

)
+w

N−1

∑
m=1

(
|m+1,A〉〈m,B|+h.c.

)
. (1.1)

Here |m,A〉 and |m,B〉, with m ∈ {1,2, . . . ,N}, denote the state of the chain where the
electron is on unit cell m, in the site on sublattice A, respectively, B, and h.c. stands for
Hermitian Conjugate (e.g., h.c. of α |m,B〉〈m,A| is c∗ |m,A〉〈m,B| for arbitrary c ∈C).

There is no reference to the spin of the electrons in the SSH model. Since no term
in the Hamiltonian acts on spin, we could skip this to simplify notation. One way to
see this is that SSH model describes spin-polarized electrons, and when applying the
model to a real physical system, e.g., polyacetylene, we have to always take two copies
of it. In this chapter we will just consider a single copy, and call the particles fermions,
or electrons, or just particles.

SOMETHING ABOUT GRAND CANONICAL. We want to describe a situation
where there are many electrons in an SSH model,

We are interested in the dynamics of fermions in and around the ground state of
the SSH model at zero temperature and zero chemical potential, where all negative
energy eigenstates of the Hamiltonian are singly occupied (because of the Pauli prin-
ciple). As we will show later, due to the absence of onsite potential terms, there are N
such occupied states. This situation – called half filling – is characteristic of the sim-
plest insulators such as polyacetylene, where each carbon atom brings one conduction
electron, and so we find 1 particle (of each spin type) per unit cell.

For simplicity, we take the hopping amplitudes to be real and nonnegative, v,w ≥
0. If this was not the case, if they carried phases, v = |v|eiφv , and w = |w|eiφw , with
φv,φw ∈ [0,π), these phases could always be “gauged away” by a redefinition of the
basis states: |m,A〉 → e−i(m−1)(φv+φw), and |m,B〉 → e−iφve−i(m−1)(φv+φw).

The matrix for the Hamiltonian of the SSH model, Eq. (1.1), on a real-space basis,
for a chain of N = 4 unit cells, reads

H =



0 v 0 0 0 0 0 0
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0
0 0 0 w 0 v 0 0
0 0 0 0 v 0 w 0
0 0 0 0 0 w 0 v
0 0 0 0 0 0 v 0


. (1.2)

External and internal degrees of freedom

There is a practical representation of this Hamiltonian, which emphasizes the separa-
tion of the external degrees of freedom (unit cell index m) from the internal degrees of
freedom (sublattice index). We can use a tensor product basis,

|m,α〉 → |m〉⊗ |α〉 ∈Hexternal⊗Hinternal, (1.3)
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with m = 1, . . . ,N, and α ∈ {A,B}. On this basis, with the Pauli matrices,

σ0 =

(
1 0
0 1

)
; σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
, (1.4)

the Hamiltonian can be written as

Ĥ = v
N

∑
m=1
|m〉〈m|⊗ σ̂x +w

N−1

∑
m=1

(
|m+1〉〈m|⊗

σ̂x + iσ̂y

2
+h.c.

)
. (1.5)

The intracell hopping shows up here as an onsite-potential-like intracell operator, while
the intercell hopping as a hopping operator.

1.2 Bulk Hamiltonian
As every solid-state system, the long chain of the SSH model has a bulk and a bound-
ary. The bulk is the long central part of the chain, the boundaries are the two ends, or
“edges” of the chain, indicated by shading in Fig. 1.1. We first concentrate on the bulk,
since, in the thermodynamic limit of N→∞, it is much larger than the boundaries, and
it will determine the most important physical properties of the model. Although the
treatment of the bulk using the Fourier transformation might seem like a routine step,
we detail it here because different conventions are used in the literature. More on this
in Appendix ??.

The physics in the bulk, the long central part of the system, should not depend on
how the edges are defined, and so for simplicity we set periodic (Born-von Karman)
boundary conditions. This corresponds to closing the bulk part of the chain into a ring,
with the bulk Hamiltonian defined as

Ĥbulk =
N

∑
m=1

(
v |m,B〉〈m,A|+w |(mmodN)+1,A〉〈m,B|

)
+h.c.. (1.6)

We are looking for eigenstates of this Hamiltonian,

Ĥbulk |Ψn(k)〉= En(k) |Ψn(k)〉 , (1.7)

with n ∈ {1, . . . ,2N}.

Bulk momentum-space Hamiltonian

Due to the translation invariance of the bulk, Bloch’s theorem applies, and we look for
the eigenstates in a plane wave form. We introduce the plane wave basis states only for
the external degree of freedom,

|k〉= 1√
N

N

∑
m=1

eimk |m〉 , for k ∈ {δk,2δk, . . . ,Nδk} with δk =
2π

N
, (1.8)
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where the wavenumber k was chosen to take on values from the first Brillouin zone.
The Bloch eigenstates read

|Ψn(k)〉= |k〉⊗ |un(k)〉 ; |un(k)〉= an(k) |A〉+bn(k) |B〉 . (1.9)

The vectors |un(k)〉 ∈Hinternal are eigenstates of the bulk momentum-space Hamilto-
nian Ĥ(k) defined as

Ĥ(k) = 〈k| Ĥbulk |k〉= ∑
α,β∈{A,B}

〈k,α|Hbulk |k,β 〉 · |α〉〈β | ; (1.10)

Ĥ(k) |un(k)〉= En(k) |un(k)〉 . (1.11)

Periodicity in wavenumber

Although Eq. (1.9) has a lot to do with the continous-variable Bloch theorem, Ψn,k(x)=
eikxun,k(x), this correspondence is not direct. In a discretization of the continuous-
variable Bloch theorem, the internal degree of freedom would play the role of the co-
ordinate within the unit cell, which is also transformed by the Fourier transform. Thus,
the function un,k(x) is cell-periodic, un,k(x+1) = un,k(x), but not periodic in the Bril-
louin zone, un,k+2π(x+ 1) 6= un,k(x). Our Fourier transform acts only on the external
degree of freedom, and as a result, we have periodicity in the Brillouin zone,

Ĥ(k+2π) = Ĥ(k); |un(k+2π)〉= |un(k)〉 . (1.12)

This convention simplifies the formulas for the topological invariants immensely. Note,
however, that the other convention, the discretization of the Bloch theorem, is also
widely used in the literature. We compare the two approaches in Appendix ??.

As an example, for the SSH model on a chain of N = 4 unit cells, the Schrödinger
equation, Eq. (1.7), using Eq. (1.9), translates to a matrix eigenvalue equation,

0 v 0 0 0 0 0 w
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0
0 0 0 w 0 v 0 0
0 0 0 0 v 0 w 0
0 0 0 0 0 w 0 v
w 0 0 0 0 0 v 0





a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

a(k)e3ik

b(k)e3ik

a(k)eNik

b(k)eNik


= E(k)



a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

a(k)e3ik

b(k)e3ik

a(k)eNik

b(k)eNik


. (1.13)

The Schrödinger equation defining the matrix H(k) of the bulk momentum-space Hamil-
tonian reads

Ĥ(k) =
(

0 v+we−ik

v+weik 0

)
; H(k)

(
a(k)
b(k)

)
= E(k)

(
a(k)
b(k)

)
. (1.14)
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Figure 1.2: Dispersion relations of the SSH model, Eq. (1.15), for five settings of
the hopping amplitudes: (a): v = 1,w = 0; (b): v = 1,w = 0.6; (c): v = w = 1; (d):
v = 0.6,w = 1; (e): v = 0,w = 1. In each case, the path of the endpoints of the vector
d(k) representing the bulk momentum-space Hamiltonian, Eqs. (1.17) and (1.18), are
also shown on the dx,dy plane, as the wavenumber is sweeped across the Brillouin
zone, k = 0→ 2π . .

1.2.1 The hopping is staggered to open a gap

The dispersion relation of the bulk can be read off from Eq. (1.14), using the fact that
Ĥ(k)2 = E(k)2Î2. This gives us

E(k) =±
∣∣∣v+ e−ikw

∣∣∣=±√v2 +w2 +2vwcosk. (1.15)

We show this dispersion relation for five choices of the parameters in Fig. 1.2.
As long as the hopping amplitudes are staggered, v 6= w, (Figs. 1.2 (a),(b),(d),(e)),

there is an energy gap of 2∆ separating the lower, filled band, from the upper, empty
band, with

∆ = mink |E(k)|= |v−w| . (1.16)

Without the staggering, i.e., if v = w, (Fig. 1.2 (c)), the SSH model describes a conduc-
tor. In that case there are plane wave eigenstates of the bulk available with arbitrarily
small energy, which can transport electrons from one end of the chain to the other.

The staggering of the hopping amplitudes occurs naturally in many solid state sys-
tems, e.g., polyacetylene, by what is known as the Peierls instability. A detailed anal-
ysis of this process neccesitates a model where the positions of the atoms are also
dynamical[32]. Nevertheless, we can understand this process intuitively just from the
effects of a slight staggering on the dispersion relation. As the gap due to the staggering
of the hopping amplitudes opens, the energy of occupied states is lowered, while unoc-
cupied states move to higher energies. Thus, the staggering is energetically favourable.
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1.2.2 Information beyond the dispersion relation
Although the dispersion relation is useful to read off a number of physical properties
of the bulk of the system (e.g., group velocities), there is also important information
about the bulk that it does not reveal. Stationary states do not only have an energy and
wavenumber eigenvalue, but also an internal structure, represented by the components
of the corresponding vector |un(k)〉 ∈Hinternal. We now define a compact representa-
tion of this information for the SSH model.

The bulk momentum-space Hamiltonian Ĥ(k) of any two-band model (i.e., a model
with 2 internal states per unit cell), reads

H(k) = dx(k)σ̂x +dy(k)σ̂y +dz(k)σ̂z = d0(k)σ̂0 +d(k)σ̂ . (1.17)

For the SSH model, d0(k) = 0, and the real numbers dx,y,z ∈ R, the components of the
k-dependent 3-dimensional vector d(k), read

dx(k) = v+wcosk; dy(k) = wsink; dz(k) = 0. (1.18)

The internal structure of the eigenstates with momentum k is given by the direction in
which the vector d(k) of Eq. (1.18) points (the energy is given by the magnitude of
d(k); for details see Sect. 2.5).

As the wavenumber runs through the Brillouin zone, k = 0→ 2π , the path that the
endpoint of the vector d(k) traces out is a closed circle of radius w on the dx,dy plane,
centered at (v,0). For more general 2-band insulators, this path need not be a circle,
but it needs to be a closed loop due to the periodicity of the bulk momentum-space
Hamiltonian, Eq. (1.12), and it needs to avoid the origin, to describe an insulator. The
topology of this loop can be characterized by an integer, the bulk winding number ν .
This counts the number of times the loop winds around the origin of the dx,dy plane.
For example, in Fig. 1.2(f),(g), we have ν = 0, in Fig. 1.2(i),(j), we have ν = 1, while
in Fig. 1.2(h), the winding number ν is undefined.

1.3 Edge states
Like any material, the SSH Hamiltonian does not only have a bulk part, but also bound-
aries (which we refer to as ends or edges). The distinction between bulk and edge is not
sharply defined, it describes the behaviour of energy eigenstates in the thermodynamic
limit. In the case we consider in these lecture notes, the bulk is translation invariant, and
then the we can distinguish edge states and bulk states by their localized/delocalized
behaviour in the thermodynamic limit. We will begin with the fully dimerized limits,
where the edge regions can be unambiguously defined. We then move away from these
limits, and use a practical definition of edge states.

1.3.1 Fully dimerized limits
The SSH model becomes particularly simple in the two fully dimerized cases: if the
intercell hopping amplitude vanishes and the intracell hopping is set to 1, v = 1,w = 0,
or vice versa, v = 0,w = 1. In both cases the SSH chain falls apart to a sequence of
disconnected dimers, as shown in Fig. 1.3.
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Figure 1.3: Fully dimerized limits of the SSH model, where the chain has fallen apart
to disconnected dimers. In the trivial case (top, only intracell hopping, v = 1,w = 0),
every energy eigenstate is an even or an odd superposition of two sites at the same unit
cell. In the topological case, (bottom, only intercell hopping, v = 0,w = 1), dimers are
between neighboring unit cells, and there is 1 isolated site per edge, that must contain
one zero-energy eigenstate each, as there are no onsite potentials. .

The bulk in the fully dimerized limits has flat bands

In the fully dimerized limits, one can choose a set of energy eigenstates which are
restricted to one dimer each. These consist of the even (energy E = +1) and odd
(energy E =−1) superpositions of the two sites forming a dimer.

In the v = 1,w = 0 case, which we call trivial, we have

v = 1,w = 0 : Ĥ(|m,A〉± |m,B〉) =±(|m,A〉± |m,B〉). (1.19)

The bulk momentum-space Hamiltonian is Ĥ(k) = σ̂x, independent of the wavenumber
k.

In the v = 0,w = 1 case, which we call topological, each dimer is shared between
two neighboring unit cells,

v = 0,w = 1 : Ĥ(|m,B〉± |m+1,A〉) =±(|m,B〉± |m+1,A〉), (1.20)

for m= 1, . . . ,N−1. The bulk momentum-space Hamiltonian now is Ĥ(k) = σ̂x cosk+
σ̂y sink.

In both fully dimerized limits, the energy eigenvalues are independent of the wavenum-
ber, E(k) = 1. In this so-called flat-band limit, the group velocity is zero, which again
shows that as the chain falls apart to dimers, a particle input into the bulk will not
spread along the chain.

The edges in the fully dimerized limit can host zero energy states

In the trivial case, v = 1,w = 0, all energy eigenstates of the SSH chain are given by
the formulas of the bulk, Eq. (1.19). A topological, fully dimerized SSH chain, with
v = 0,w = 1, however, has more energy eigenstates than those listed Eq. (1.20). Each
end of the chain hosts a single eigenstate at zero energy,

v = 0,w = 1 : Ĥ |1,A〉= Ĥ |N,B〉= 0. (1.21)

These eigenstates have support on one site only. Their energy is zero because onsite
potentials are not allowed in the SSH model. These are the simplest examples of edge
states.
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1.3.2 Moving away from the fully dimerized limit

We now examine what happens to the edge states as we move away from the fully
dimerized limit. To be specific, we examine how the spectrum of an open topological
chain, v = 0,w = 1, of N = 10 unit cells changes, as we continuously turn on the
intracell hopping amplitude v. The spectra, Fig. 1.4, reveal that the energies of the
edge states remain very close to zero energy.

The wavefunctions of almost-zero-energy edge states have to be exponentially lo-
calized at the left/right edge, because the zero of energy is in the bulk band gap. A
plot of the wavefunctions (which have only real components, since the Hamiltonian is
real), Fig. 1.4, reveals that the almost-zero-energy eigenstates are odd and even super-
positions of states localized exponentially on the left and right edge. This is a result of
the exponentially small overlap between the left and the right edge states. We will later
show, in Sect. 1.5.2, that the edge-state energies are also controlled by this overlap, and
are of the order E = e−N/ξ , with a localization length ξ = 1/ log(v/w).

There is an important property of the left/right edge states, which is only revealed
by the plot of the wavefunctions, Fig. 1.4. These states have nonvanishing components
only on the A/B sublattice.

In the following, we show the generality of these properties, and show the link
between the bulk winding number and the presence/absence of edge states, known as
bulk–boundary correspondence. In the case of the SSH model, all this hinges on a
property of the model known as chiral symmetry.

Figure 1.4: Energy spectrum and wave functions of a finite-sized SSH model. The
number of unit cells is N = 10. (a) Energy spectrum of the system for intercell hopping
amplitude w = 1 as a function the intracell hopping amplitude v. v < 1 (v > 1) corre-
sponds to the topological (trivial) phases. (b) and (c) shows the wave functions of the
hybridized edge states, while (d) shows a generic bulk wave function.
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1.4 Chiral symmetry
In quantum mechanics, we say that a Hamiltonian Ĥ has a symmetry represented by a
unitary operator Û if

ÛĤÛ† = Ĥ. (1.22)

In case of a symmetry, Û and Ĥ can be diagonalized together, and therefore, Ĥ induces
no transitions between two eigenstates of Û with different eigenvalues. This can be un-
derstood as a superselection rule: if we partition the Hilbert space into different sectors,
i.e., eigenspaces of Û , labeled by the corresponding eigenvalues, then the dynamics as
defined by Ĥ can be regarded separately in each sector.

No unitary symmetries

A unitary symmetry can be simply made to disappear if we restrict ourselves to one
sector of the Hilbert space. This is how we obtained the bulk momentum-space Hamil-
tonian, in Sect. 1.2, where the symmetry was the lattice translation operator Û =
|(m mod N)+1,A〉〈m,A|+ |m+1,B〉〈m,B|, and the labels of the superselection sec-
tors were the quasimomenta k.

A different type of symmetry

The word “symmetry” is also used in a different sense in condensed matter physics.
We say that a system with Hamiltonian Ĥ has chiral symmetry, if

Γ̂ĤΓ̂
† =−Ĥ, (1.23)

with an operator Γ̂ that is not only unitary, but fulfils some other criteria as well. Notice
the extra minus sign on the right hand side. This has important consequences, which
we come to later, but first discuss the criteria on the symmetry operator.

First, in order to exclude conventional unitary symmetries, the chiral symmetry
operator has to be not only unitary but Hermitian as well, Γ̂† = Γ̂. This can be written
succintly as

Γ̂
†
Γ̂ = Γ̂

2 = 1. (1.24)

To understand where the requirement of hermiticity comes from, consider the operator
Γ̂2. This represents a conventional unitary symmetry of Ĥ, since

Γ̂
2Ĥ(Γ̂2)† = Γ̂(Γ̂ĤΓ̂

†)Γ̂† =−Γ̂ĤΓ̂
† = Ĥ. (1.25)

Now remember that we excluded the presence of unitary symmetries by restricting
our attention to a single sector for each symmetry. Thus, Eq. (1.25) is only possible
if Γ̂2 = eiφ . The phase φ can always be gauged away by a redefinition of the chiral
symmetry, Γ̂→ e−iφ/2Γ̂.

Second, it is also required that the sublattice operator Γ̂ be local. The system is
assumed to consist of unit cells, and matrix elements of Γ̂ between sites from differ-
ent unit cells should vanish. In the SSH chain, this means that for m 6= m′, we have
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〈m,α| Γ̂ |m′,α ′〉 = 0, for any α,α ′ ∈ (A,B). To keep things simple, we can demand
that the sublattice operator act in the same way in each unit cell (although this is not
strictly necessary), its action represented by a unitary operator γ̂ acting on the internal
Hilbert space of one unit cell, i.e.,

Γ̂ = γ̂⊕ γ̂⊕ . . .⊕ γ̂ =
N⊕

m=1

γ̂, (1.26)

where N is the number of unit cells.
A third requirement, which is often not explicitly stated, is that the chiral symmetry

has to be robust. To understand what we mean by that, first note that in solid state
physics, we often deal with Hamiltonians with many local parameters that vary in a
controlled or uncontrolled way. An example is the SSH model, where the values of the
hopping amplitudes could be subject to spatial disorder. We gather all such parameters
in a formal vector, and call it ξ ∈ Ξ. Here Ξ is the set of all realizations of disorder that
we investigate. Instead of talking about the symmetries of a Hamiltonian Ĥ, we should
rather refer to symmetries of a set of Hamiltonians {Ĥ(ξ )}, for all ξ ∈ Ξ. This set has
chiral symmetry represented by Γ̂ if

∀ξ ∈ Ξ : Γ̂Ĥ(ξ )Γ̂ =−Ĥ, (1.27)

with the symmetry operator Γ̂ independent of the parameters ξ . This is the robustness
of the chiral symmetry.

1.4.1 Consequences of chiral symmetry for energy eigenstates

We now come to the consequences of chiral symmetry, which are very different from
those of conventional symmetries, due to the extra minus sign in its definition, Eq. (1.23).

Sublattice symmetry

Chiral symmetry is also called sublattice symmetry. Given the chiral symmetry opera-
tor Γ̂, we can define orthogonal sublattice projectors P̂A and P̂B, as

P̂A = 1
2

(
I+ Γ̂

)
; P̂B = 1

2

(
I− Γ̂

)
, (1.28)

where I represents the unity operator on the Hilbert space of the system. Note that
P̂A + P̂B = I, and P̂AP̂B = 0. The defining relation of sublattice symmetry, Eq. (1.23),
can be written in an equivalent form by requiring that the Hamiltonian induces no
transitions from any state on one sublattice to any state on the same sublattice,

P̂AĤP̂A = PBĤP̂B = 0; Ĥ = P̂AĤP̂B + P̂BĤP̂A. (1.29)

In fact, using the projectors P̂A and P̂B is an alternative and equivalent way of defining
chiral symmetry.
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Symmetric spectrum

The spectrum of a chiral symmetric Hamiltonian is symmetric. For any state with
energy E, there is a chiral symmetric partner with energy −E. This is simply seen,

Ĥ |ψn〉= En |ψn〉 =⇒ ĤΓ̂ |ψn〉=−Γ̂Ĥ |ψn〉=−Γ̂En |ψn〉=−EnΓ̂ |ψn〉 . (1.30)

This carries different implications for nonzero energy eigenstates and zero energy
eigenstates.

For En 6= 0, the states |ψn〉 and Γ̂ |ψn〉 are eigenstates with different energy, and,
therefore, have to be orthogonal. This implies that every nonzero energy eigenstate of
Ĥ has equal support on both sublattices,

If En 6= 0 : 0 = 〈ψn| Γ̂ |ψn〉= 〈ψn| P̂A |ψn〉−〈ψn| P̂B |ψn〉 . (1.31)

For En = 0, zero energy eigenstates can be chosen to have support on only one
sublattice. This is because

If Ĥ |ψn〉= 0 : ĤP̂A/B |ψn〉= 1
2 Ĥ
(
|ψn〉± Γ̂ |ψn〉

)
= 0. (1.32)

These projected zero-energy eigenstates are eigenstates of Γ̂, and therefore are chiral
symmetric partners of themselves.

1.4.2 Sublattice projectors and chiral symmetry of the SSH model
The Hamiltonian of the SSH model, Eq. (1.1), is bipartite: the Hamiltonian includes
no transitions between sites with the same sublattice index. The projectors to the sub-
lattices read

P̂A =
N

∑
m=1
|m,A〉〈m,A| ; P̂B =

N

∑
m=1
|m,B〉〈m,B| . (1.33)

Chiral symmetry is represented by the sublattice operator Σ̂z, that multiplies all com-
ponents of a wavefunction on sublattice B by (-1),

Σ̂z = P̂A− P̂B. (1.34)

Note that this operator has the properties required of the chiral symmetry operator
above: it is unitary, Hermitian, and local.

The chiral symmetry of the SSH model is a restatement of the fact that the Hamil-
tonian is bipartite,

P̂AĤP̂A = P̂BĤP̂B = 0; ⇔ Σ̂zĤΣ̂z =−Ĥ. (1.35)

This relation holds because Ĥ only contains terms that are multiples of |m,A〉〈m′,B|, or
of |m,B〉〈m′,A| with m,m′ ∈ Z. Upon multiplication from the left and the right by Σ̂z,
such a term picks up a single factor of −1 (because of the multiplication from the left
or because of the multiplication from the right). Note that this relation, equivalent to
an anticommutation of Ĥ and Σ̂z, holds whether or not the hopping amplitudes depend
on position: therefore, the chiral symmetry represented by Σ̂z has the required property
of robustness.
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1.4.3 Consequence of chiral symmetry: Bulk winding number for
the SSH model

As the wavenumber goes through the Brillouin zone, k = 0 → 2π , the path of the
endpoint of d(k) – the vector characterizing the Hamiltonian through Ĥ(k) = d(k)σ̂ –
describes a closed path on the dx,dy plane. This path has to avoid the origin, d = 0: if
there was a k at which d(k) = 0, the gap would close at this k, and we would not be
talking about an insulator. Because of chiral symmetry, the vector d(k) is restricted to
lie on the dxdy plane,

σ̂zĤ(k)σ̂z =−Ĥ(k) =⇒ dz(k) = 0. (1.36)

This is then a closed, directed loop on the plane, and thus has a well defined integer
winding number about the origin.

Winding number as the multiplicity of solutions

The simplest way to obtain the winding number graphically is counting the number of
times d(k) intersects a curve that goes from the origin of the dx,dy plane to infinity.

1. Since d(k) is a directed curve, it has a left side and a right side. Paint the left side
blue, the right side red, as shown in Fig. 1.5 (a).

2. Take a directed curve L going from 0 to infinity. We can call this the “line of
sight to infinity”, although it need not be a straight line. A simple choice is the
half-infinite line, dy = 0, dx ≥ 0. Two other choices are shown in Fig. 1.5.

3. Identify the intersections of d(k) with L .

4. Each intersection has a signature: this is +1 if the line of sight meets it from the
blue side, −1 for the red side.

5. The winding number ν is the sum of the signatures.

Figure 1.5: The endpoints of the vector d(k) as k goes across the Brillouin zone (red or
blue closed circles).
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We now consider how the winding number ν defined above can change under con-
tinuous deformations of L or of d(k). We only allow for deformations that keep both
curves on the plane, maintain L going from the origin to infinity, and do not create
points where d(k) = 0. Due to the deformations the intersections of L and d(k) can
move, but this does not change ν . They can also appear or disappear, at points where
L and d(k) touch. However, they can only appear or disappear pairwise: a red and a
blue intersection together, which does not change ν . As an example, the two choices
of the line of sight L in Fig. 1.5 (a), have 1 or 3 intersections, but the winding number
is +1, for either of them.

Winding number as an integral

The winding number can also be written as a compact formula using the unit vector d̃,
defined as

d̃ =
d
|d|

. (1.37)

This is the result of projecting the curve of d(k) to the unit circle, as shown in Fig. 1.5
(b). The vector d̃(k) is well defined for all k because d(k) 6= 0.

You can check easily that the winding number ν is given by

ν =
1

2π

∫ (
d̃(k)× d

dk
d̃(k)

)
z
dk. (1.38)

To calculate ν directly from the bulk momentum-space Hamiltonian, note that it is
off-diagonal (in the basis of eigenstates of the chiral symmetry operator σz),

H(k) =
(

0 h(k)
h∗(k) 0

)
; h(k) = dx(k)− idy(k). (1.39)

The winding number of d(k) can be written as an integral, using the complex logarithm
function, log(|h|eiargh) = log |h|+ iargh. It is easy to check that

ν =
1

2πi

∫
π

−π

dk
d
dk

logh(k). (1.40)

Here during the calculation of the integral, the branch cut for the logarithm is always
shifted so that the derivative is always well defined. The above integral is always real,
since |h(k =−π)|= |h(k = π)|.

Winding number of the SSH model

For the SSH model, the winding number is either 0 or 1, depending on the parameters.
In the trivial case, when the intracell hopping dominates the intercell hopping, v > w,
the winding number is ν = 0. In the topological case, when w > v, we have ν = 1.

To change the winding number ν of the SSH model, we need to either a) pull the
path of d(k) through the origin in the dx,dy plane, or (b) lift it out of the plane and put
it back on the plane at a different position. This is illustrated in Fig. 1.6. Method (a)
requires closing the bulk gap. Method (b) requires breaking chiral symmetry.
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1.5 Number of edge states as topological invariant
We now introduce the notion of adiabatic deformation of insulating Hamiltonians. An
insulating Hamiltonian is adiabatically deformed if

• its parameters are changed continuously,

• the important symmetries of the system are maintained,

• the bulk gap around E = 0 remains open.

The deformation is a fictitious process, and does not take place in time. However, if we
do think of it as a process in real time, the adiabatic theorem [15] tells us, that, starting
from the many-body ground state (separated from excited states by the energy gap),
and performing the deformation slowly enough, we end up in the ground state, at least
as far as the bulk of the system is concerned. At the edges of a system, changes can
occur, and there is a subtle point to be made about adiabatic deformations being slow,
but not too slow, that the edges should still be considered separately. We will come
back to this point in Chapt. 4.

Adiabatic equivalence of Hamiltonians

Two insulating Hamiltonians are said to be adiabatically equivalent or adiabatically
connected if there is an adiabatic deformation connecting them, that respects the im-

Figure 1.6: The endpoints of the vector d(k) as k goes across the Brillouin zone (red or
blue closed circles), for various parameter settings in the SSH model. In (a), intercell
hopping is kept constant at w = 1, while the intracell hopping is increased from v = 0
to v = 2.3. In the process, the bulk gap was closed and reopened, as the origin (black
point) falls on one of the blue circles. The winding number is changed from 1 to 0. In
(b), we again keep w = 1, and increase v from 0 to 2.3, but this time avoid closing the
bulk gap by introducing a sublattice potential, Hsublattice = uσ̂z. We do this by tuning a
parameter θ from 0 to π , and setting v = 1.15(1− cosθ), and u = sinθ . At the end of
the process, θ = π , there is no sublattice potential, so chiral symmetry is restored. The
winding number has been changed from 1 to 0.
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portant symmetries. For example, in the phase diagram Fig. 1.7 of the SSH model,
the two Hamiltonians corresponding to the two black points in the topological phase
(w > v) are adiabatically connected, as one can draw a path between them which does
not cross the gapless topological-trival phase boundary w = v.

Topological invariant

We call an integer number characterizing an insulating Hamiltonian a topological in-
variant, or adiabatic invariant, if it cannot change under adiabatic deformations. Note
that the use of adiabatic deformations implies two properties of the topological in-
variant: 1) it is only well defined in the thermodynamic limit, 2) it depends on the
symmetries that need to be respected. An example for a topological invariant is the
winding number ν of the SSH model.

We know that two insulating Hamiltonians are not adiabatically equivalent if their
topological invariants differ. Consider as an example two Hamiltonians corresponding
to two points on different sides of the phase boundary in Fig. 1.7 of the SSH model.
One might think that although there is no continuous path connecting them in the phase
diagram, continuously modifying the bulk Hamiltonian by the addition of extra terms
can lead to a connection between them. However, their winding numbers differ, and
since winding numbers cannot change under adiabatic deformation, we know that they
are not adiabatically equivalent.

Figure 1.7: Phase diagram of the SSH model. The winding number of the bulk
momentum-space Hamiltonian Ĥ(k) can be ν = 0, if v > w, or ν = 1, if v < w. This
defines the trivial (gray) and the topological phase (white). The boundary separating
these phases (black solid line), corresponds to v =w, where the bulk gap closes at some
k. Two Hamiltonians in the same phase are adiabatically connected.
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Number of edge states as a topological invariant

We have seen in Sect. 1.3.2, that the number of edge states at one end of the SSH model
was an integer that did not change under a specific type of adiabatic deformation. We
now generalize this example.

Consider energy eigenstates at the left end of a gapped chiral symmetric one-
dimensional Hamiltonian in the thermodynamic limit, i.e., with length N → ∞, in an
energy window from−ε < E < ε , with ε in the bulk gap. There can be nonzero energy
edge states in this energy window, and zero energy edge states as well. Each nonzero
energy state has to have a chiral symmetric partner, with the state and its partner occu-
pying the same unit cells (the chiral symmetry operator is a local unitary). The number
of zero energy states is finite (because of the gap in the bulk), and they can be restricted
to a single sublattice each. There are NA zero energy states on sublattice A, and NB
states on sublattice B.

Consider the effect of an adiabatic deformation of the Hamiltonian, indexed by
some continuous parameter d : 0→ 1, on the number NA−NB. The Hamiltonian re-
spects chiral symmetry, and its bulk energy gap exceeds 2ε , for all values of d.

The deformation can create zero energy states by bringing a nonzero energy edge
state |Ψ0(d = 0)〉 to zero energy, E0(d) = 0. Assume this happens at d = d′: for d ≥ d′,
E0(d) = 0, but not for d < d′. In that case, the chiral symmetric partner of |Ψ0〉, which
is Γ |Ψ0(d)〉 up to a phase factor, has to move simultaneously to zero energy. The
newly created zero energy edge states are P̂A |Ψ0(d′)〉 and P̂B |Ψ0(d′)〉, which occupy
sublattice A and B, respectively. Thus, the number NA−NB is unchanged.

The deformation can also bring a zero energy state |Ψ0〉 to energy E > 0 at some
d = d′. However, it must also create a chiral symmetric partner with energy E < 0 at
the same d′. This is the time reverse of the process of the previous paragraph: here,
both NA and NB must decrease by 1, and, again, NA−NB is unchanged.

The deformation can move nonzero energy states in or out of the −ε < E < ε

energy window. This obviously has no effect on the number NA−NB.
Due to the deformation, the wavefunction of a zero energy eigenstate can change so

that it extends deeper and deeper into the bulk. However, because of the gap condition,
zero energy states have to have wavefunctions that decay exponentially towards the
bulk, and so this process cannot move them away from the edge. Thus, NA and NB
cannot be changed this way.

The arguments above show that NA−NB, the net number of edge states on sublattice
A at the left edge, is a topological invariant.

Bulk–boundary correspondence in the SSH model

We have introduced two topological invariants for the SSH model: the winding number
ν , of Eq. (1.38), and the net number of edge states, NA−NB, of this section. The first
one was obtained from the bulk Hamiltonian only, the second by looking at the low
energy sector of the left edge. In the trivial case of the SSH model, v > w, both are
0; in the topological case, v < w, both are 1. This shows that we can use the bulk
topological invariant (the winding number) to make simple robust predictions about
the low-energy physics at the edge. This is a simple example for the bulk–boundary
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Figure 1.8: A long, fully dimerized SSH chain with 3 domains. The boundaries be-
tween the domains, the “domain walls”, host zero energy eigenstates (yellow shading).
These can be localized on a single site, as for the domain wall at n = 3, or on a super-
position of sites, as the odd superposition of the ends of the trimer shared between the
n = 6 and n = 7 unit cells. .

correspondence, a recurrent theme in the theory of topological insulators, which will
reappear in various models in the forthcoming chapters.

1.5.1 Bound states at domain walls

Edge states do not only occur at the ends of an open chain, but also at interfaces be-
tween different insulating domains of the same chain. This can be understood via the
fully dimerized limit, Fig. 1.8. There are two types of domain walls here: those con-
taining single isolated sites, which host 0 energy states on a single sublattice (no onsite
potentials are allowed), and those containing trimers. On a trimer, the odd superposi-
tion of the two end sites form a zero energy eigenstate. In the the example of Fig. 1.8,
this is

Ĥ(|6,B〉− |7,B〉) = 0. (1.41)

Note that, just as the edge states at the ends of the chain, these zero energy states at the
interfaces have wavefunctions that take nonzero values on one sublattice only.

From a perfect dimerized phase without domains it is only possible to germinate
an even number of interfaces. This means that if one encounters a domain wall with
a localized state on one sublattice then there will be another domain wall somewhere
in the system – possibly at the system’s edge – with a localized state on the opposite
sublattice.

Consider a domain wall in an SSH system that is not in the fully dimerized limit.
The wavefunctions of the edge states at the domain walls will penetrate to some small
depth into the bulk, with exponentially decaying evanescent tails. For two domain
walls at a distance of M unit cells, the two edge states on the walls will hybridize, form
“bonding” and “anti-bonding” states. At half filling, of these only the negative energy
eigenstate will be occupied. This state hosts a single electron, however, its wavefunc-
tion is localized with equal weight on the two domain walls. Hence each domain wall,
when well separated from other domain walls and the ends of the chain, will carry half
an electronic charge. This effect is sometimes referred to as “fractionalization” of the
charge.
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1.5.2 Exact calculation of edge states
The zero energy edge states of the SSH model can also be calculated exactly, even
in the absence of translational invariance. Take an SSH model on N unit cells, with
complex intracell and intercell hopping amplitudes,

Ĥ =
N

∑
m=1

(
vm |m,B〉〈m,A|+h.c.

)
+

N−1

∑
m=1

(
wm |m+1,A〉〈m,B|+h.c.

)
. (1.42)

We are looking for a zero energy eigenstate of this Hamiltonian,

Ĥ
N

∑
m=1

(
am |m,A〉+bm |m,B〉

)
= 0. (1.43)

This gives us 2N equations for the amplitudes am and bm, which read

m = 1, . . . ,N−1 : vmam +wmam+1 = 0; wmbm + vm+1bm+1 = 0; (1.44a)
boundaries : vNaN = 0; v1b1 = 0. (1.44b)

The first set of equations is solved by

m = 2, . . . ,N : am =
m−1

∏
j=1

−v j

w j
a1; (1.45)

m = 1, . . . ,N−1 : bm =
−vN

wm

N−1

∏
j=m+1

−v j

w j
bN . (1.46)

However, we also have to fulfil Eqs. (1.44b), which give

b1 = aN = 0. (1.47)

These equations together say that, in the generic case, there is no zero energy eigen-
state, am = bm = 0.

Although there is no exactly zero energy state, Eqs. (1.45), (1.46) and (1.47) admit
two approximate solutions in the thermodynamic limit, N→ ∞, if the average intercell
hopping is stronger than the intracell hopping. More precisely, we define the “bulk
average values”,

log |v|= 1
N−1

N−1

∑
m=1

log |vm| ; log |w|= 1
N−1

N−1

∑
m=1

log |wm| . (1.48)

Eqs. (1.45) and (1.46) translate to

|aN |= |a1|e−(N−1)/ξ ; |b1|= |bN |e−(N−1)/ξ |vN |
|v1|

, (1.49)

with the localization length

ξ =
1

log |w|− log |v|
. (1.50)
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If in the thermodynamic limit, the bulk average values, Eqs. (1.48) make sense, and
ξ > 0, we have two approximate zero energy solutions,

|L〉=
N

∑
m=1

am |m,A〉 ; |R〉=
N

∑
m=1

bm |m,B〉 , (1.51)

with the coefficients am and bm chosen according to Eqs. (1.45) and (1.46), and a1,
respectively, bN , used to fix the norm of |L〉, respectively, |R〉.

Hybridization of edge states

The two states |L〉 and |R〉 hybridize under Ĥ to an exponentially small amount, and
this induces a small energy splitting. We can obtain an estimate for the splitting, and
the energy eigenstates, to a good approximation using adiabatic elimination of the other
eigenstates. In this approximation, the central quantity is the overlap

〈R| Ĥ |L〉=
∣∣∣a1e−(N−1)/ξ vNbN

∣∣∣eiφ , (1.52)

with some φ ∈ [0,2π). The energy eigenstates are approximated as

|0+〉= e−iφ/2 |L〉+ eiφ/2 |R〉√
2

; E+ =
∣∣∣a1e−(N−1)/ξ vNbN

∣∣∣ ; (1.53)

|0−〉= e−iφ/2 |L〉− eiφ/2 |R〉√
2

; E− =−
∣∣∣a1e−(N−1)/ξ vNbN

∣∣∣ . (1.54)

The energy of the hybridized states thus is exponentially small in the system size.

Problems
Higher winding numbers
The SSH model is one-dimensional in space, and has a two-dimensional internal Hilbert
space. Construct a lattice model that has these properties of the SSH model, but which
has a bulk winding number of 2. Generalize the construction for an arbitrary integer
bulk winding number.

Complex-valued hopping amplitudes
Generalize the SSH model in the following way. Assume that the hopping amplitudes
v = |v|eiφv and w = |w|eiφw are complex, and include a third complex-valued hopping
amplitude z = |z|eiφz between the states |m,A〉 and |m+1,B〉 for every m. Provide
a specific example where the tuning of one of the phases changes the bulk winding
number.

A possible generalization to two dimensions
Consider a two dimensional generalization of the SSH model. Take parallel copies of
the SSH chain and couple them without breaking chiral symmetry. What will happen
with the edge states?
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Chapter 2

Berry phase, Chern number

* To describe the theory of topological band insulators we will use the language of
adiabatic phases. In this chapter we review the basic concepts: the Berry phase, the
Berry curvature, and the Chern number. We further describe the relation between the
Berry phase and adiabatic dynamics in quantum mechanics. Finally, we illustrate these
concepts using the two-level system as a simple example.

To describe the theory of topological band insulators we will use the language of
adiabatic phases. In this chapter we review the basic concepts: the Berry phase, the
Berry curvature, and the Chern number. We further describe the relation between the
Berry phase and adiabatic dynamics in quantum mechanics. Finally, we illustrate these
concepts using the two-level system as a simple example.

For pedagogical introductions, we refer the reader to Berry’s original paper[6], and
papers from the Americal Journal of Physics[18, 14]. For the application to solid state
physics, we will mostly build on Resta’s lecture note[26], and Niu’s review paper[36].

2.1 Discrete case

The subject of adiabatic phases is strongly related to adiabatic quantum dynamics,
when a Hamiltonian is slowly changed in time, and the time evolution of the quantum
state follows the instantaneous eigenstate of the Hamiltonian. In that context, as time
is a continuous variable and the time-dependent Schrödinger equation is a differential
equation, the adiabatic phase and the related concepts are expressed using differential
operators and integrals. We will arrive to that point later during this chapter; how-
ever, we start the discussion using the language of discrete quantum states. Besides
the conceptual simplicity, this language also offers an efficient tool for the numerical
evaluation of Chern number, which is an important topological invariant in the context
of two-dimensional electron systems.

21
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2.1.1 Relative phase of two nonorthogonal quantum states

In quantum mechanics, the state of a physical system is represented by an equivalence
class of vectors in a Hilbert space: a multiplication by a complex phase factor does not
change the physical content. A gauge transformation is precisely such a multiplication:

|Ψ〉 → eiα |Ψ〉 , with α ∈ [0,2π). (2.1)

In that sense, the phase of a vector |Ψ〉 does not represent physical information. We
can try to define the relative phase γ12 of two nonorthogonal states |Ψ1〉 and |Ψ2〉 as

γ12 =−arg〈Ψ1 |Ψ2〉 , (2.2)

where arg(z) denotes the phase of the complex number z, with the specification that
arg(z) ∈ (−π,π]. Clearly, the relative phase γ12 fulfils

e−iγ12 =
〈Ψ1 |Ψ2〉
|〈Ψ1 |Ψ2〉|

. (2.3)

The relative phase is not invariant under a local gauge transformation,∣∣Ψ j
〉
→ eiα j

∣∣Ψ j
〉

e−iγ12 → e−iγ12+i(α2−α1). (2.4)

2.1.2 Berry phase

Take N ≥ 3 states in a Hilbert space, order them in a loop, and ask about the phase
around the loop. As we show below, the answer – the Berry phase – is gauge invariant.
For states

∣∣Ψ j
〉
, with j = 1,2, . . . ,N, and for the ordered list L = (1,2, . . . ,N) which

define the loop, shown in Fig. 2.1, the Berry phase is defined as

γL =−arge−i(γ12+γ23+...+γN1) =−arg(〈Ψ1 |Ψ2〉〈Ψ2 |Ψ3〉 . . .〈ΨN |Ψ1〉) . (2.5)

To show the gauge invariance of the Berry phase, it can be rewritten as

γL =−argTr (|Ψ1〉〈Ψ1| |Ψ2〉〈Ψ2| . . . |ΨN〉〈ΨN |) . (2.6)

Here, we expressed the Berry phase γL using projectors that are themselves gauge in-
variant.

Even though the Berry phase is not the expectation value of some operator, it is a
gauge invariant quantity, and as such, it can have a direct physical significance. We will
find such a significance, but first, we want to gain more intuition about its behaviour.

2.1.3 Berry flux

Consider a Hilbert space of quantum states, and a finite two-dimensional square lattice
with points labelled by n,m ∈ Z, 1 ≤ n ≤ N, and 1 ≤ m ≤M. Assign a quantum state
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Figure 2.1: Berry phase, Berry flux and Berry curvature for discrete quantum states.
(a) The Berry phase γL for the loop L consisting of N = 3 states is defined from the
relative phases γ12, γ23, γ31. (b) The Berry phase of a loop defined on a lattice of states
can be expressed as the sum of the Berry phases F1,1 and F2,1 of the plaquettes enclosed
by the loop. The plaquette Berry phase Fn,m is also called Berry flux.

|Ψn,m〉 from the Hilbert space to each lattice site. Say you want to know the Berry
phase of the loop L around this set,

γL =−argexp

[
− i

(
N−1

∑
n=1

γ(n,1),(n+1,1)+
M−1

∑
m=1

γ(N,m),(N,m+1)

+
N−1

∑
n=1

γ(n+1,M),(n,M)+
M−1

∑
m=1

γ(1,m+1),(1,m)

)]
(2.7)

as shown in Fig. 2.1. Although the Berry phase is a gauge invariant quantity, calculating
it according to the recipe above involves multiplying together many gauge dependent
complex numbers. The alternative route, via Eq. (2.6), involves multliplying gauge
independent matrices, and then taking the trace.

There is a way to break the calculation of the Berry phase of the loop down to
a product of gauge independent complex numbers. To each plaquette (elementary
square) on the grid, with n,m indexing the lower left corner, we define the Berry flux
Fn,m of the plaqette using the sum of the relative phases around its boundary,

Fnm =−argexp
[
−i
(
γ(n,m),(n+1,m)+ γ(n+1,m),(n+1,m+1)

+γ(n+1,m+1),(n,m+1)+ γ(n,m+1),(n,m)

)]
, (2.8)

for n = 1, . . . ,N and m = 1, . . . ,M. Note that the Berry flux is itself a Berry phase and
is therefore gauge invariant. Alternatively, we can also write

Fnm =−arg
(
〈Ψn,m |Ψn+1,m〉〈Ψn+1,m |Ψn+1,m+1〉

〈Ψn+1,m+1 |Ψn,m+1〉〈Ψn,m+1 |Ψn,m〉
)
, (2.9)

Now consider the product of all plaquette phase factors e−iFnm ,

N−1

∏
n=1

M−1

∏
m=1

e−iFnm = exp
[
− i

N−1

∑
n=1

M−1

∑
m=1

Fnm

]
= exp

[
− i

N−1

∑
n=1

M−1

∑
m=1

(
γ(n,m),(n+1,m)

+ γ(n+1,m),(n+1,m+1)+ γ(n+1,m+1),(n,m+1)+ γ(n,m+1),(n,m)

)]
(2.10)
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Each internal edge of the lattice is shared between two plaquettes, and therefore occurs
twice in the product. Since we fixed the orientation of the plaquette phases, these two
contributions will always be complex conjugates of each other, and cancel each other.
Therefore the exponent in the right-hand-side of Eq. (2.10) simplifies to the exponent
appearing in Eq. (2.7), implying

exp
[
− i

N−1

∑
n=1

M−1

∑
m=1

Fnm

]
= e−iγL . (2.11)

This result is reminsicent of the Stokes theorem connecting the integral of the curl of
a vector field on an open surface and the line integral of the vector field along the
boundary of the surface. In Eq. (2.11), the sum of the relative phases, i.e., the Berry
phase γL, plays the role of the line integral, whereas the double sum of the Berry fluxes
plays the role of the surface integral. There is an important difference with respect to
the Stokes theorem, namely, the equality of the total Berry flux and the Berry phase is
not guaranteed: Eq. (2.11) only tells us that they are either equal or have a difference
of 2π times an integer.

2.1.4 Chern number
Consider states in a Hilbert space arranged on a grid as above, |Ψn,m〉, with n,m ∈ Z,
1 ≤ n ≤ N, and 1 ≤ m ≤M, but now imagine this grid to be on the surface of a torus.
We use the same definition for the Berry flux per plaquette as in (2.9), but now with
n mod N +1 in place of n+1 and m mod M+1 in place of m+1.

The product of the Berry flux phase factors of all plaquettes is now 1,

M

∏
m=1

N

∏
n=1

e−iFnm = 1. (2.12)

The same derivation can be applied as for Eq. (2.11) above, but now every edge is an
internal edge, and so all contributions to the product cancel.

The Chern number Q associated to our structure is defined as the sum of the Berry
fluxes of all the plaquettes forming the closed torus surface:

Q =
1

2π
∑
nm

Fnm. (2.13)

The fact that the Chern number Q is defined via the gauge invariant Berry fluxes ensures
that Q itself is gauge invariant. Furthermore, taking the arg of Eq. (2.12) proves that
the Chern number Q is an integer.

It is worthwhile to look a little deeper into the discrete formula for the Chern num-
ber. We can define modified Berry fluxes F̃nm as

F̃nm = γ(n,m),(n+1,m)+ γ(n+1,m),(n+1,m+1)+ γ(n+1,m+1),(n,m+1)+ γ(n,m+1),(n,m). (2.14)

The sum of the modified Berry fluxes over all plaquettes vanishes,

M

∑
m=1

N

∑
n=1

F̃nm = 0, (2.15)
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since each edge is shared between two neighboring plaquettes. If for some n,m, we
have −π ≤ F̃nm < π , then F̃nm = Fnm. However, F̃nm can be outside the range [−π,π):
then as the logarithm is taken in Eq. (2.8), Fnm is taken back into [−π,π) by adding
a (positive or negative) integer multiple of 2π . In that case, we say the plaquette nm
contains a number Qnm ∈ Z of vortices, with

Qnm =
Fnm− F̃nm

2π
∈ Z. (2.16)

We have found a simple picture for the Chern number: The Chern number Q, de-
fined as the sum of the Berry fluxes of all the plaquettes of a closed surface, is the
number of vortices on the surface,

Q =
1

2π
∑
nm

Fnm = ∑
nm

Qnm ∈ Z. (2.17)

Although we proved it here for the special case of a torus, the derivation is easily
generalized to all orientable closed surfaces. We focused on the torus, because this
construction can be used as a very efficient numerical recipe to discretize and calcu-
late the (continuum) Chern number of a 2-dimensional insulator[12], to be defined in
Sect. 2.2.4.

2.2 Continuum case
We now assume that instead of a discrete set of states, {

∣∣Ψ j
〉
}, we have a continuum,

|Ψ(R)〉, where the R’s are elements of some D-dimensional parameter space P .

2.2.1 Berry connection
We take a smooth directed curve C , i.e., a path in the parameter space P ,

C : [0,1)→P, t 7→ R(t). (2.18)

We assume that all components of |Ψ(R)〉 are smooth, at least in an open neighborhood
of the the curve C . The relative phase between two neighbouring states on the path C ,
corresponding to the parameters R and R+dR, is

e−i∆γ =
〈Ψ(R) |Ψ(R+dR)〉
|〈Ψ(R) |Ψ(R+dR)〉|

; ∆γ = i〈Ψ(R)|∇R |Ψ(R)〉 ·dR, (2.19)

obtained to first order in dR→ 0. The quantity multiplying dR on the right-hand side
defines the Berry connection,

A(R) = i〈Ψ(R) | ∇RΨ(R)〉=−Im 〈Ψ(R) | ∇RΨ(R)〉 . (2.20)

Here |∇RΨ(R)〉 is defined by requiring for every Hilbert space vector |Φ〉, that

〈Φ | ∇RΨ(R)〉= ∇R 〈Φ |Ψ(R)〉 . (2.21)
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The second equality in Eq. (2.20) follows from the conservation of the norm, ∇R 〈Ψ(R) |Ψ(R)〉=
0.

We have seen in the discrete case that the relative phase of two states is not gauge
invariant; neither is the Berry connection. Under a gauge transformation, it changes as

|Ψ(R)〉 → eiα(R) |Ψ(R)〉 : A(R)→ A(R)−∇Rα(R). (2.22)

2.2.2 Berry phase
Consider a closed directed curve, i.e., a loop C in parameter space. The Berry phase
along the loop is defined as

γ(C ) =−argexp

−i
∮
C

A ·dR

 (2.23)

The Berry phase of a closed directed curve is gauge invariant, since it can be interpreted
as a limiting case of the gauge invariant discrete Berry phase, Eq. (2.5).

2.2.3 Berry curvature
As in the discrete case above, we would like to express the gauge invariant Berry phase
as a surface integral of a gauge invariant quantity. This quantity is the Berry curvature.
Similarly to the discrete case, we consider a two-dimensional parameter space, and
for simplicity denote the parameters as x and y. We take a simply connected region
F in this two-dimensional parameter space, with the oriented boundary curve of this
surface denoted by ∂F , and consider the continuum Berry phase corresponding to the
boundary.

Smoothness of the manifold of states

Before relating the Berry phase to the Berry curvature, an important note on the man-
ifold |Ψ(R)〉 of considered states is in order. From now on, we consider a manifold
of states, living in our two-dimensional parameter space, that is smooth, in the sense
that the map ~R 7→ |Ψ(R)〉〈Ψ(R)| is smooth. Importantly, this condition does not nec-
essarily imply that that the function R 7→ |Ψ(R)〉, which is the wavefunction in a given
gauge, is smooth. (For further discussion and examples, see Sect. 2.5.1.) Nevertheless,
even if R 7→ |Ψ(R)〉 is not smooth in a point R0 of the parameter space, one can al-
ways find an alternative gauge, where the wavefunction |Ψ′(R)〉 is (i) locally smooth
(smooth in the point R0), and (ii) locally generates the same map as |Ψ(R)〉, meaning
|Ψ′(R)〉〈Ψ′(R)|= |Ψ(R)〉〈Ψ(R)| in an infinitesimal neighborhood of R0. An intuitive
argument supporting the latter claim can be given using quantum-mechanical perturba-
tion theory. Take the Hamiltonian Ĥ(R) =−|Ψ(R)〉〈Ψ(R)|, which can be substituted
in the infinitesimal neighborhood of R0 with Ĥ(R0 +∆R) = Ĥ(R0)+∆R · (∇Ĥ)(R0).
According to first-order perturbation theory, the ground state of the latter is given by∣∣Ψ′(R0 +∆R)

〉
= |Ψ(R0)〉−

D

∑
n=2
|Ψn(R0)〉〈Ψn(R0)|∆R · (∇Ĥ)(R0) |Ψ(R0)〉 , (2.24)
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where the states |Ψn(R0)〉 (n = 2,3, . . . ,D), together with |Ψ(R0)〉, form a basis of the
Hilbert space. On the one hand, Eq. (2.24) defines a function that is smooth in R0,
hence the condition (i) above is satisfied. On the other hand, as |Ψ′(R0 +∆R)〉 is the
ground state of Ĥ(R0 +∆R), condition (ii) is also satisfied.

Berry phase and Berry curvature

Now return to our original goal and try to express the Berry phase as a surface integral
of a gauge invariant quantity; to this end, we start by relating the Berry phase to its
discrete counterpart: ∮

∂F
A ·dR = lim

∆x,∆y→0
γ∂F , (2.25)

where we discretize the parameter space using a square grid of steps ∆x, ∆y, and express
the integral as the discrete Berry phase γ∂F of a loop approximating ∂F , in the limit
of an infinitesimally fine grid. Then, from Eq. (2.25) and the Stokes-type theorem in
Eq. (2.11), we obtain

exp
[
−i
∮

∂F
A ·dR

]
= lim

∆x,∆y→0
e−i∑nm Fnm , (2.26)

where the nm sum goes for the plaquettes forming the open surface F . Furthermore,
let us take a wavefunction |Ψ′(R)〉 and the corresponding Berry connection A′ that is
smooth in the plaquette nm; this could be |Ψ(R)〉 and A if that was already smooth.
Then, due to the gauge invariance of the Berry flux we have

e−iFnm = e−iF ′nm , (2.27)

where F ′nm is the Berry flux corresponding to the locally smooth gauge. Furthermore,
in the limit of an infinitely fine grid it holds that

F ′nm = A′x

(
xn +

∆x
2
,ym

)
∆x+A′y

(
xn+1,ym +

∆y
2

)
∆y

− A′x

(
xn +

∆x
2
,ym+1

)
∆x−A′y

(
xn,ym +

∆y
2

)
∆y. (2.28)

Taylor expansion of the Berry connection around Rnm =
(

xn +
∆x
2 ,ym + ∆y

2

)
to first

order yields

F ′nm =
[
∂xA′y(Rnm)−∂yA′x(Rnm)

]
∆x∆y. (2.29)

Thereby, with the definition of the Berry curvature as

Bnm = lim
∆x,∆y→0

F ′nm

∆x∆y
, (2.30)

we obtain a quantity that is gauge invariant, as it is defined via the gauge invariant
Berry flux, and is related to the Berry connection via

B = ∂xA′y(Rnm)−∂yA′x(Rnm). (2.31)
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We can rephrase Eq. (2.29) as follows: the Berry flux for the nm plaquette is expressed
as the product of the Berry curvature on the plaquette and the surface area of the pla-
quette.

Substituting Eqs. (2.27) and (2.29) into Eq. (2.26) yields

exp
[
−i
∮

∂F
A ·dR

]
= exp

[
−i
∫

F
B(x,y)dxdy

]
, (2.32)

which is the continuum version of the result (2.11). Equation (2.32) can also be
rephrased as

γ(∂F ) =−arge−i
∫
F B(x,y)dxdy. (2.33)

A special case where the usual Stokes theorem works

A shortcut towards a stronger result than Eq. (2.32) is offered in the special case
when |Ψ(R)〉 is smooth in the neighborhood of the open surface F . Then, a direct
application of the two-dimensional Stokes theorem implies∮

∂F
A ·dR =

∫
F
(∂xAy−∂yAx)dxdy =

∫
F

Bdxdy (2.34)

Summarizing Eqs. (2.32) and (2.34), we can say that line integral of the Berry con-
nection equals the surface integral of the Berry curvature if the set of states |Ψ(R)〉 is
smooth in the neighborhood of F , but they might differ by an integer multiple of 2π

otherwise.

The case of the three-dimensional parameter space

We briefly discuss the case of a 3D parameter space, which will be particularly useful
in the context of two-level systems. Starting with the case when the gauge |Ψ(R)〉 on
the two-dimensional open surface F embedded in the 3D parameter space is smooth
in the neighborhood of F , we can directly apply the 3D Stokes theorem to convert the
line integral of A to the surface integral of the curl of A to obtain∮

∂F
A ·dR =

∫
F

B ·d~S, (2.35)

where the Berry curvature is defined as the vector field B(R) via

B(R) = ∇R×A(R), (2.36)

which is gauge invariant as in the two-dimensional case. Even if |Ψ(R)〉 is not smooth
on F , the relation

γ(∂F ) =−arge−i
∮

∂F A·dR =−arge−i
∫
F B·d~S (2.37)

holds, similarly to the two-dimensional result Eq. (2.32).
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Note furthermore that the Berry phase γ(∂F ) is not only gauge invariant, but also
invariant against continuous deformations of the two-dimensional surface F embedded
in 3D, as long as the Berry curvature is smooth everywhere along the way.

We also remark that although we used the three-dimensional notation here, but the
above results can be generalized for any dimensionality of the parameter space.

The notation A and B for the Berry connection and Berry curvature suggest that
they are much like the vector potential and the magnetic field. This is a useful analogy,
for instance, ∇RB = 0, from the definition (2.36). Nevertheless, it is not true that in
every problem where the Berry curvature is nonzero, there is a physical magnetic field.

2.2.4 Chern number

In the discrete case, we defined the Chern number as a sum of Berry fluxes for a square
lattice living on a torus. Here, we take a continuum parameter space that has the topol-
ogy of a torus. The motivation is the Brillouin zone of a two-dimensional lattice rep-
resenting a solid crystalline material. The Brillouin zone has a torus topology, as the
momentum vectors (kx,ky), (kx +2π,ky), and (kx,ky +2π) are equivalent.

Quite naturally, in the continuum definition of the Chern number, the sum of Berry
fluxes is replaced by the surface integral of the Berry curvature:

Q =− 1
2π

∫
P

Bdxdy. (2.38)

As this can be interpreted as a continuum limit of the discrete Chern number, it inherits
the properties of the latter: the continuum Chern number is a gauge invariant integer.

For future reference, let us lay down the notation to be used for calculating the
Chern numbers of electronic energy bands in two-dimensional crystals. Consider a
square lattice for simplicity, which has a square-shaped Brillouin zone as well. Our pa-
rameter space P is the two-dimensional Brillouin zone now, which has a torus topol-
ogy as discussed above. The parameters are the Cartesian components kx,ky ∈ [−π,π)

of the momentum vector~k. The electronic energy bands and the corresponding electron
wavefunctions can be obtained from the bulk momentum-space Hamiltonian Ĥ(kx,ky).
The latter defines the Schrödinger equation

Ĥ(k) |un(k)〉= En(k) |un(k)〉 , (2.39)

where n = 1,2, . . . is the band index, which has as many possible values as the dimen-
sion of the Hilbert space of the internal degree freedom of our lattice model. Note that
defining the Berry connection, the Berry curvature and the Chern number for the nth
band is possible only if that band is separated from the other bands by finite energy
gaps. The Berry connection of the nth band, in line with the general definition (2.20),
reads

A(n)
j (k) = i〈un(k)|∂k j |un(k)〉 , for j = x,y. (2.40)

The Chern number of the nth band, in correspondence with Eqs. (2.38) and (2.31),
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reads

Q(n) =− 1
2π

∫
BZ

dkxdky

(
∂A(n)

y

∂kx
− ∂A(n)

x

∂ky

)
. (2.41)

Certain approximations of the band-structure theory of electrons provide low-dimensional
momentum-space Hamiltonians that can be diagonalized analytically, allowing for an
analytical derivation of the Chern numbers of the electronic bands. More often, how-
ever, the electronic wave functions are obtained from numerical techniques on a finite-
resolution grid of (kx,ky) points in the Brillouin zone. In that case, the Chern number
of a chosen band can still be effectively evaluated using the discrete version of its defi-
nition (2.13).

The Chern number of a band of an insulator is a topological invariant in the follow-
ing sense. One can imagine that the Hamiltonian describing the electrons on the lattice
is deformed adiabatically, that is, continuously and with the energy gaps separating the
nth band from the other bands kept open. In this case, the Berry curvature varies con-
tinuously, and therefore its integral for the Brillouin zone, which is the Chern number,
cannot change as the value of the latter is restricted to integers. If the deformation of
the crystal Hamiltonian is such that some energy gaps separating the nth band from a
neighboring band is closed and reopened, that is, the deformation of the Hamiltonian
is not adiabatic, then the Chern number might change. In this sense, the Chern num-
ber is a similar topological invariant for two-dimensional lattice models as the winding
number is for the one-dimensional SSH model.

2.3 Berry phase and adiabatic dynamics
In most physical situations of interest, the set of states whose geometric features (Berry
phases) we are interested in are eigenstates of some Hamiltonian Ĥ. Take a physical
system with D real parameters that are gathered into a formal vector R=(R1,R2, . . . ,RD).
The Hamiltonian is a smooth function Ĥ(R) of the parameters, at least in the region of
interest. We order the eigenstates of the Hamiltonian according to the energies En(R),

Ĥ(R) |n(R)〉= En(R) |n(R)〉 . (2.42)

We call the set of eigenstates |n(R)〉 the snapshot basis.
The definition of the snapshot basis involves gauge fixing, i.e., specifying the oth-

erwise arbitrary phase prefactor for every |n(R)〉. This can be a tricky issue: even if in
theory a gauge exists where all elements of the snapshot basis are smooth functions of
the parameters, this gauge might be very challenging to construct.

We consider the following problem. We assume that the system is initialized with
R = R0 and in an eigenstate |n(R0)〉 that is in the discrete part of the spectrum, i.e.,
En(R)−En−1(R) and En+1(R)−En(R) are nonzero. At time t = 0 we thus have

R(t = 0) = R0; |ψ(t = 0)〉= |n(R0)〉 . (2.43)

Now assume that during the time t = 0→ T the parameters R are slowly changed: R
becomes R(t), and the values of R(t) define a continuous curve C . Also, assume that
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|n(R)〉 is smooth along the curve C . The state of the system evolves according to the
time-dependent Schrödinger equation:

i
d
dt
|ψ(t)〉= Ĥ(R(t)) |ψ(t)〉 . (2.44)

Further, assume that R is varied in such a way that at all times the energy gaps
around the state |n(R(t))〉 remain finite. We can then choose the rate of variation of
R(t) along the path C to be slow enough compared to the frequencies corresponding to
the energy gap, so the adiabatic approximation holds. In that case, the system remains
in the energy eigenstate |n(R(t))〉, only picking up a phase. We are now going to find
this phase.

By virtue of the adiabatic approximation, we take as Ansatz

|ψ(t)〉= eiγn(t)e−i
∫ t

0 En(R(t ′))dt ′ |n(R(t))〉 . (2.45)

For better readability, in the following we often drop the t argument where this leads to
no confusion. The time derivative of Eq. (2.45) reads

i
d
dt
|ψ(t)〉= eiγne−i

∫ t
0 En(R(t ′))dt ′

(
−dγn

dt
|n(R)〉+En(R) |n(R)〉+ i

∣∣ d
dt n(R)

〉)
.

(2.46)

To show what we mean by
∣∣ d

dt n(R(t))
〉
, we write it out explicitly in terms of a fixed

basis, that of the eigenstates at R = R0:

|n(R)〉= ∑
m

cm(R) |m(R0)〉 ; (2.47)

∣∣ d
dt n(R(t))

〉
=

dR
dt
· |∇Rn(R)〉= dR

dt ∑
m

∇Rcm(R) |m(R0)〉 . (2.48)

We insert the Ansatz (2.45) into the right hand side of the Schrödinger equation (2.44),
use the snapshot eigenvalue relation (2.42), simplify and reorder the Schrödinger equa-
tion, and obtain

−dγn

dt
|n(R)〉+ i

∣∣ d
dt n(R)

〉
= 0. (2.49)

Multiplying from the left by 〈n(R)|, and using Eq. (2.48), we obtain

d
dt

γn(t) = i
〈
n(R(t))

∣∣ d
dt n(R(t))

〉
=

dR
dt

i〈n(R) | ∇Rn(R)〉 . (2.50)

We have found that for the curve C in parameter space, traced out by R(t), there is
an adiabatic phase γn(C ), which reads

γn(C ) =
∫
C

i〈n(R) | ∇Rn(R)〉dR. (2.51)
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A related result is obtained after a similar derivation, if the parameter space of the
R points is omitted and the snapshot basis |n(t)〉 is parametrized directly by the time
variable. Then, the adiabatic phase is

γn(t) =
∫ t

0
i
〈
n(t ′)

∣∣ ∂t ′n(t
′)
〉

dt ′. (2.52)

Equation (2.51) allows us to formulate the key message of this section as the fol-
lowing. Consider the case of an adiabatic and cyclic change of the Hamiltonian, that
is, when the curve C is closed, R(T ) = R0. In this case, the adiabatic phase reads

γn(C ) =
∮
C

i〈n(R) | ∇Rn(R)〉dR. (2.53)

Therefore, the adiabatic phase picked up by the state during a cyclic adiabatic change of
the Hamiltonian is equivalent to the Berry phase corresponding to the closed oriented
curve representing the Hamiltonian’s path in the parameter space.

Two further remarks are in order. First, on the face of it, our derivation seems to
do too much. It seems that we have produced an exact solution of the Schrödinger
equation. Where did we use the adiabatic approximation? In fact, Eq. (2.50) does not
imply Eq. (2.49). For the more complete derivation, showing how the nonadiabatic
terms appear, see [15].

The second remark concerns the measurability of the Berry phase. The usual way
to experimentally detect phases is by an interferometric setup. This means coherently
splitting the wavefunction of the system into two parts, taking them through two adia-
batic trips in parameter space, via R(t) and R′(t), and bringing the parts back together.
The interference only comes from the overlap between the states: it is maximal if
|n(R(T ))〉 = |n(R′(T ))〉, which is typically ensured if R(T ) = R′(T ). The difference
in the adiabatic phases γn and γ ′n is the adiabatic phase associated with the closed loop
C , which is the path obtained by going forward along t = 0→ T : R(t), then coming
back along t = T → 0 : R′(t).

2.4 Berry’s formulas for the Berry curvature
Berry provided[6] two practical formulas for the Berry curvature. Here we present
them in a form corresponding to a three-dimensional parameter space. To obtain the
two-dimensional case, where the Berry curvature B is a scalar, one can identify the
latter with the component Bz of the three-dimensional case treated below; for general-
ization to higher than 3 dimensions, see the discussion in Berry’s paper[6].

The first of Berry’s formulas reads,

B j =−Im ε jkl ∂k 〈n | ∂ln〉=−Im ε jkl 〈∂kn | ∂ln〉+0, (2.54)

where the second term is 0 because ∂k∂l = ∂l∂k but ε jkl =−ε jlk.
To obtain Berry’s second formula, inserting a resolution of identity in the snapshot

basis in the above equation, we obtain

B(n) =−Im ∑
n′ 6=n

〈
∇n
∣∣ n′
〉
×
〈
n′
∣∣ ∇n

〉
, (2.55)
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where the parameter R is suppressed for brevity. The term with n′ = n is omitted
from the sum, as it is zero, since because of the conservation of the norm, 〈∇n | n〉 =
−〈n | ∇n〉. To calculate 〈n′ | ∇n〉, start from the definition of the eigenstate |n〉, act on
both sides with ∇, and then project unto |n′〉:

Ĥ |n〉= En |n〉 ; (2.56)

(∇Ĥ) |n〉+ Ĥ |∇n〉= (∇En) |n〉+En |∇n〉 ; (2.57)〈
n′
∣∣∇Ĥ |n〉+

〈
n′
∣∣ Ĥ |∇n〉= 0+En

〈
n′
∣∣ ∇n

〉
. (2.58)

Act with H towards the left in Eq. (2.58), rearrange, substitute into (2.55), and you
should obtain the second form of the Berry curvature, which is manifestly gauge in-
variant:

B(n) =−Im ∑
n′ 6=n

〈n|∇Ĥ |n′〉×〈n′|∇Ĥ |n〉
(En−En′)2 . (2.59)

This shows that the monopole sources of the Berry curvature, if they exist, are the
points of degeneracy.

A direct consequence of Eq. (2.59), is that the sum of the Berry curvatures of all
eigenstates of a Hamiltonian is zero. If all the spectrum of Ĥ(R) is discrete along a
closed curve C , then one can add up the Berry phases of all the energy eigenstates.

∑
n

B(n) =−Im ∑
n

∑
n′ 6=n

〈n|∇RĤ |n′〉×〈n′|∇RĤ |n〉
(En−En′)2

=−Im ∑
n

∑
n′<n

1
(En−En′)2

(
〈n|∇RĤ

∣∣n′〉×〈n′∣∣∇RĤ |n〉

+
〈
n′
∣∣∇RĤ |n〉×〈n|∇RĤ

∣∣n′〉)= 0. (2.60)

The last equation holds because~a×~b =−~b×~a for any two vectors~a,~b.

2.5 Example: the two-level system
So far, most of the discussion on the Berry phase and the related concepts have been
kept rather general. In this section, we illustrate these concepts via the simplest non-
trivial example, that is, the two-level system.

2.5.1 No continuous global gauge
Consider a Hamiltonian describing a two-level system:

Ĥ(d) = dxσ̂x +dyσ̂y +dzσ̂z = d · σ̂ , (2.61)

with d = (dx,dy,dz) ∈ R3\{0}. Here, the vector d plays the role of the parameter
R in of preceding sections, and the parameter space is the punctured 3D Euclidean
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Figure 2.2: The Bloch sphere. A generic traceless gapped two-level Hamiltonian is a
linear combination of Pauli matrices, Ĥ(d) = d · σ̂ . This can be identified with a point
in R3\{0}. The eigenenergies are given by the distance of the point from the origin,
the eigenstates depend only on the direction of the vector d, i.e., on the angles θ and
ϕ , as defined in subfigure (a) and in Eq. (2.62) The Berry phase of a closed curve C is
half the area enclosed by the curve when it is projected onto the surface of the Bloch
sphere.

space R3\{0}, to avoid the degeneracy of the energy spectrum. Note the absence of a
term proportional to σ0: this would play no role in adiabatic phases. Because of the
anticommutation relations of the Pauli matrices, the Hamiltonian above squares to a
multiple of the identity operator, Ĥ(d)2 = d2σ0. Thus, the eigenvalues of Ĥ(d) have
to have absolute value |d|.

A practical graphical representation of Ĥ(d) is the Bloch sphere, shown in Fig. 2.2.
The spherical angles θ ∈ [0,π) and ϕ ∈ [0,2π) are defined as

cosθ =
dz

|d|
; eiϕ =

dx + idy√
d2

x +d2
y

. (2.62)

We denote the two eigenstates of the Hamiltonian Ĥ(d) by |+d〉 and |−d〉, with

Ĥ(d) |±d〉=±|d| |±d〉 . (2.63)

These eigenstates depend on the direction of the 3-dimensional vector d, but not on its
length. The eigenstate with E =+ |d| of the corresponding Hamiltonian is:

|+d〉= eiα(θ ,ϕ)

(
e−iϕ/2 cosθ/2
eiϕ/2 sinθ/2

)
, (2.64)

while the eigenstate with E = −|d| is |−d〉 = eiβ (d) |+−d〉. The choice of the phase
factors α and β above corresponds to fixing a gauge. We will now review a few gauge
choices.
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Consider fixing α(θ ,ϕ) = 0 for all θ ,ϕ . This is a very symmetric choice, in this
way in formula (2.64), we find θ/2 and ϕ/2. There is problem, however, as you can see
if you consider a full circle in parameter space: at any fixed value of θ , let ϕ = 0→ 2π .
We should come back to the same Hilbert space vector, and we do, but we also pick
up a phase of −1. We can either say that this choice of gauge led to a discontinuity at
ϕ = 0, or that our representation is not single-valued. We now look at some attempts
at fixing these problems, to find a gauge that is both continuous and single valued.

As a first attempt, let us fix α = ϕ/2; denoting this gauge by subscript S, we have

|+d〉S =
(

cosθ/2
eiϕ sinθ/2

)
. (2.65)

The phase prefactor now gives an additional factor of −1 as we make the circle in ϕ at
fixed θ , and so it seems we have a continuous, single valued representation. There are
two tricky points, however: the North Pole, θ = 0, and the South Pole, θ = π . At the
North Pole, |(0,0,1)〉S = (1,0) no problems. This gauge is problematic at the South
Pole, however (which explains the choice of subscript): there, |(0,0,−1)〉S = (0,eiϕ),
and thus the value of the wavefunction depends on which direction we approach the
South Pole from.

We can try to solve the problem at the South Pole by choosing α = −ϕ/2, which
gives us

|+d〉N =

(
e−iϕ cosθ/2

sinθ/2

)
. (2.66)

As you can probably already see, this representation runs into trouble at the North Pole:
|(0,0,1)〉N = (e−iϕ ,0).

We can try to overcome the problems at the poles by taking linear combinations of
|+d〉S and |+d〉N , with prefactors that vanish at the South and North Poles, respectively.
A family of options is:

|+d〉χ = eiχ sin
θ

2
|+d〉S + cos

θ

2
|+d〉N (2.67)

=

(
cos θ

2 (cos θ

2 + sin θ

2 eiχ e−iϕ)

sin θ

2 eiϕ(cos θ

2 + sin θ

2 eiχ e−iϕ)

)
. (2.68)

This is single valued everywhere, solves the problems at the Poles. However, it has its
own problems: somewhere on the Equator, at θ = π/2, ϕ = χ±π , its norm disappears.

It is not all that surprising that we could not find a well-behaved gauge: there is
none. By the end of this chapter, it should be clear, why.

2.5.2 Calculating the Berry curvature and the Berry phase
Consider the two-level system as defined in the previous section. Take a closed curve
C in the parameter space R3\{0}. We are going to calculate the Berry phase γ− of the
|−d〉 eigenstate on this curve:

γ−(C ) =
∮
C

A(d)dd, (2.69)
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with the Berry vector potential defined as

A(d) = i〈−d|∇d |−d〉 . (2.70)

The calculation becomes straightforward if we use the Berry curvature,

B(d) = ∇d×A(d); (2.71)

γ−(C ) =
∫

S
B(d)dS , (2.72)

where S is any surface whose boundary is the loop C . (Alternatively, it is a worthwhile
exercise to calculate the Berry phase directly in a fixed gauge, e.g., one of the three
gauges of the previous chapter.)

Specifically, we make use of Berry’s gauge invariant formulation (2.59) of the Berry
curvature, derived in the last chapter. In the case of the generic two-level Hamiltonian
(2.61), Eq. (2.59) gives

B±(d) =−Im
〈±|∇dĤ |∓〉×〈∓|∇dĤ |±〉

4d2 , (2.73)

with

∇dĤ = σ̂ . (2.74)

To evaluate (2.73), we choose the quantization axis parallel to d, thus the eigenstates
simply read

|+d〉=
(

1
0

)
; |−d〉=

(
0
1

)
. (2.75)

The matrix elements can now be computed as

〈−| σ̂x |+〉=
(
0 1

)(0 1
1 0

)(
1
0

)
= 1, (2.76)

and similarly,

〈−|σy |+〉= i; (2.77)
〈−|σz |+〉= 0. (2.78)

So the cross product of the vectors reads

〈−| σ̂ |+〉×〈+| σ̂ |−〉=

1
i
0

×
 1
−i
0

=

0
0
2i

 . (2.79)

This gives us for the Berry curvature,

B±(d) =± d
|d|

1
2d2 . (2.80)
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We can recognize in this the field of a pointlike monopole source in the origin. Note
however that this monopole exists in the abstract space of the vectors d and not in real
space, as the magnetic monopoles of electrodynamics [CITATION?].

The Berry phase of the closed loop C in parameter space, according to Eq. (2.72),
is the flux of the monopole field through a surface S whose boundary is C . It is easy
to convince yourself that this is half of the solid angle subtended by the curve,

γ−(C ) =
1
2

ΩC . (2.81)

In other words, the Berry phase is half of the area enclosed by the image of C , projected
onto the surface of the unit sphere, as illustrated in Fig. 2.2.

What about the Berry phase of the other energy eigenstate? From Eq. (2.73), the
corresponding Berry curvature B+ is obtained by inverting the order of the factors in
the cross product: this flips the sign of the cross product. Therefore the Berry phases
of the ground and excited state fulfil the relation

γ+(C ) =−γ−(C ), (2.82)

as they should. One can see the same result on the Bloch sphere. Since 〈+ | −〉= 0, the
point corresponding to |−〉 is antipodal to the point corresponding to |+〉. Therefore,
the curve traced by the |−〉 on the Bloch sphere is the inverted image of the curve
traced by |+〉. These two curves have the same orientation, therefore the same area,
with opposite signs.

2.5.3 Two-band lattice models and their Chern numbers
The simplest case where a Chern number can arise is a two-band system. Consider
a particle with two internal states, hopping on a two-dimensional lattice. The two
internal states can be the spin of the conduction electron, but can also be some sublattice
index of a spin polarized electron. In the translation invariant bulk, the wave vector
k = (kx,ky) is a good quantum number, and the Hamiltonian reads

Ĥ(k) = d(k)σ̂ , (2.83)

with the function d(k) mapping the each point of the Brillouin Zone to a 3D vector.
Since the Brillouin zone is a torus, the endpoints of the vectors d(k) map out a de-
formed torus in R3\{0}. This torus is an oriented surface: its inside can be painted red,
its outside, blue.

The Chern number of |−〉 (using the notation of Sect. 1.2, of |u1(k)〉) is the flux
of B−(d) through this torus. We have seen above that B−(d) is the magnetic field of
a monopole at the origin d = 0. If the origin is on the inside of the torus, this flux is
+1. If it is outside of the torus, it is 0. If the torus is turned inside out, and contains the
origin, the flux is -1. The torus can also intersect itself, and therefore contain the origin
any number of times.

One way to count the number of times is to take any line from the origin to infinity,
and count the number of times it intersects the torus, with a +1 for intersecting from
the inside, and a -1 for intersecting from the outside. The sum is independent of the
shape of the line, as long as it goes all the way from the origin to infinity.

FIGURE HERE!
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Problems
Discrete Berry phase and Bloch vectors
Take an ordered set of three arbitrary, normalized states of a two-level system. Evaluate
the corresponding discrete Berry phase. Each state is represented by a vector on the
Bloch sphere. Show analytically that if two of the vectors coincide, then the discrete
Berry phase vanishes.

Two-level system and the Berry connection
Consider the two-level system defined in Eq. (2.61), and describe the excited energy
eigenstates using the gauge |+d〉S defined in Eq. (2.65). Using this gauge, evaluate
and visualize the corresponding Berry connection vector field ~A(~d). Is it well-defined
in every point of the parameter space? Complete the same tasks using the gauge |+d〉N
defined in Eq. (2.66).

Massive Dirac Hamiltonian
Consider the two-dimensional massive Dirac Hamiltonian Ĥ(kx,ky) = mσ̂z + kxσ̂x +
kyσ̂y, where m∈R is a constant and the parameter space is R2 3 (kx,ky). (a) Take a cir-
cular loop with radius κ in the parameter space, centered around the origin. Calculate
the Berry phase associated to this loop and the ground-state manifold of the Hamilto-
nian: γ−(m,κ) =?. (b) Calculate the Berry connection B−(kx,ky) for the ground-state
manifold. (c) Integrate the Berry connection for the whole parameter space. How does
the result depend on m?

Absence of a continuous global gauge
In Sect. 2.5.1, we have shown example gauges for the two-level system that were not
globally smooth on the parameter space. Prove that such globally smooth gauge does
not exist.

Chern number of two-band models
Consider a two-band lattice model with the Hamiltonian Ĥ(k) = d(k) · σ̂ . Express the
Chern number of the lower-energy band in terms of d(k)/|d(k)|.



Chapter 3

Polarization and Berry phase

*What is the bulk polarization of a band insulator? We review the answer to this ques-
tion provided by the modern theory of polarization. This defines a set of orthonor-
mal, localized Wannier states for the electrons in the occupied bands, whose centers of
masses can be identified with the electron positions. We show that the Wannier centers
of states from a band are calculated using the Berry phase of the band, for the path
of the wavenumber k across the Brillouin zone. In later chapters we will corroborate
the identification of the Berry phase with the bulk polarization by calculating the cur-
rent in the bulk. We will use the concepts of this chapter to obtain the bulk–boundary
correspondence for two-dimensional topological insulators. As an illustration of these
concepts, we use the Rice-Mele model, obtained by adding a sublattice potential to the
Su-Schrieffer-Heeger model of polyacetylene.

The bulk polarization of a band insulator is a tricky concept. Polarization of a
neutral molecule is easily defined using the difference in centers of the negative and
positive charges constituting the system. When we try to apply this simple concept to
the periodic bulk of a band insulator (assuming for simplicity that the positive atom
cores are immobile and localized), we meet complications. The center of the negative
charges should be calculated from electrons in the fully occupied valence bands. How-
ever, all energy eigenstates in the valence band are delocalized over the bulk, and so the
center of charge of each electron in such a state is ill defined. Nevertheless, insulators
are polarizable, and respond to an external electric field by a rearrangement of charges,
which corresponds to a (tiny) current in the bulk. Thus, there should be a way to define
a bulk polarization.

In this chapter we show how a bulk polarization can be defined for band insulators
using the so-called modern theory of polarization[27, 28, 23]. The contribution of the
electrons to the polarization is a property of the many-body electron state, a Slater
determinant of the energy eigenstates from the fully occupied valence bands. The
central idea is to rewrite the same Slater determinant using a different orthonormal
basis, one composed of localized states, the so-called Wannier states. The contribution
of each electron in a Wannier state to the center of charge can then be easily assessed,
and then added up.

We discuss the simplest interesting case, that of a one-dimensional two-band insu-

39
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lator with one occupied and one empty band, and leave the multiband case for later. We
show that the center of charge of the Wannier states can be identified with the Berry
phase of the occupied band over the Brillouin zone, also known as the Zak phase[38].

For a more complete and very pedagogical introduction to the Berry phase in elec-
tron wavefunctions, we refer the reader to a set of lecture notes by Resta[26].

The Rice-Mele model

The toy model we use in this chapter is the Rice-Mele model, obtained from the SSH
model of Chapt. 1 by adding an extra staggered onsite potential. The Hamiltonian for
the Rice-Mele model on a chain of N unit cells reads

Ĥ = v
N

∑
m=1

(
|m,B〉〈m,A|+h.c.

)
+w

N−1

∑
m=1

(
|m+1,A〉〈m,B|+h.c.

)
+u

N

∑
m=1

(
|m,A〉〈m,A|− |m,B〉〈m,B|

)
, (3.1)

with the staggered onsite potential u, the intracell hopping amplitude v, and intercell
hopping amplitude w all assumed to be real. The matrix of the Hamiltonian for the
Rice-Mele model on a chain of N = 4 sites reads

H =



u v 0 0 0 0 0 0
v −u w 0 0 0 0 0
0 w u v 0 0 0 0
0 0 v −u w 0 0 0
0 0 0 w u v 0 0
0 0 0 0 v −u v 0
0 0 0 0 0 w u v
0 0 0 0 0 0 v −u


, (3.2)

3.1 Wannier states in the Rice-Mele model
The bulk energy eigenstates of a band insulator are delocalized over the whole system.
We use as an example the bulk Hamiltonian of the Rice-Mele model, i.e., the model on
a ring of N unit cells. As in the case of the SSH model, Sect. 1.2, the energy eigenstates
are the plane wave Bloch states,

|Ψ(k)〉= |k〉⊗ |u(k)〉 , (3.3)

with

|k〉= 1√
N

N

∑
m=1

eimk |m〉 , for k ∈ {δk,2δk, . . . ,Nδk} with δk =
2π

N
. (3.4)

We omit the index 1 from the eigenstate for simplicity. The |u(k)〉 are eigenstates of
the bulk momentum-space Hamiltonian,

H(k) =
(

u v+we−ik

v+weik −u

)
, (3.5)
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with eigenvalue E(k).
The Bloch states |Ψ(k)〉 are spread over the whole chain. They span the occupied

subspace, defined by the projector

P̂ = ∑
k∈BZ
|Ψ(k)〉〈Ψ(k)| . (3.6)

The phase of each Bloch eigenstate |Ψ(k)〉 can be set at will. A change of these
phases, a gauge transformation,

|u(k)〉 → eiα(k) |u(k)〉 ; |Ψ(k)〉 → eiα(k) |Ψ(k)〉 , (3.7)

gives an equally good set of Bloch states, with an arbitrary set of phases α(k) ∈ R
for k = δk,2δk, . . . ,2π . Using this freedom it is in principle possible to ensure that in
the thermodynamic limit of N→ ∞, the components of |Ψ(k)〉 are smooth, continuous
functions of k. However, this gauge might not be easy to obtain by numerical methods.
We therefore prefer, if possible, to work with gauge-independent quantities, like the
projector to the occupied subspace defined in Eq. (3.6).

Defining properties of Wannier states

The Wannier states |w( j)〉 ∈Hexternal⊗Hinternal, with j = 1, . . . ,N, are defined by the
following properties:〈

w( j′)
∣∣ w( j)

〉
= δ j′ j Orthonormal set (3.8a)

N

∑
j=1
|w( j)〉〈w( j)|= P̂ Span the occupied subspace (3.8b)

〈m+1 | w( j+1)〉= 〈m | w( j)〉 Related by translation (3.8c)

lim
N→∞
〈w(N/2)|(x̂−N/2)2 |w(N/2)〉< ∞ Localization (3.8d)

with the addition in Eq. (3.8c) defined modulo N. Requirement (3.8d), that of localiza-
tion, uses the position operator,

x̂ =
N

∑
m=1

m(|m,A〉〈m,A|+ |m,B〉〈m,B|) , (3.9)

and refers to a property of |w( j)〉 in the thermodynamic limit of N → ∞ that is not
easy to define precisely. In this one-dimensional case it can be turned into an even
stricter requirement of exponential localization, 〈w( j) | m〉〈m | w( j)〉 < e−| j−m|/ξ for
some finite localization length ξ ∈ R.
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Wannier states are inverse Fourier transforms of the Bloch eigenstates

Because of Bloch’s theorem, all energy eigenstates have a plane wave form not only in
the canonical basis |m,β 〉, with β = A,B, but in the Wannier basis as well,

|Ψ(k)〉= e−iα(k) 1√
N

N

∑
j=1

eik j |w( j)〉 , (3.10)

with some phase factors α(k). To convince yourself of this, consider the components of
the right-hand-side in the basis of Bloch eigenstates. The right-hand-side is an eigen-
state of the lattice translation operator S, with eigenvalue e−ik, and therefore, orthog-
onal to all of the Bloch eigenstates |Ψ(k′)〉 with k′ 6= k. It is also orthogonal to all
positive energy eigenstates, since it is in the occupied subspace. Thus, the only state
left is |Ψ(k)〉.

From Eq. (3.10), an inverse Fourier transformation gives us a practical Ansatz for
Wannier states,

|w( j)〉= 1√
N

Nδk

∑
k=δk

e−i jkeiα(k) |Ψ(k)〉 . (3.11)

There is still a large amount of freedom left by this form, since the gauge function α(k)
is unconstrained. This freedom can be used to construct Wannier states as localized as
possible. If, e.g., a smooth gauge is found, where in the N → ∞ limit, the compo-
nents of eiα(k) |Ψ(k)〉 are analytic functions of k, we have exponential localization of
the Wannier states due to properties of the Fourier transform. (More generally, if a dis-
continuity appears first in the lth derivative of |Ψ(k)〉, the components of the Wannier
state |w( j)〉 will decay as 〈m | w( j)〉 ∝ |m− j|−l−1.)

Wannier centers can be identified with the Berry phase

We first assume that we have found a continuous gauge. The center of the Wannier
state |w(0)〉 can be calculated, using

x̂ |w(0)〉= 1
2π

∫
π

−π

dk∑
m

meikm |m〉⊗ |u(k)〉

=− i
2π

[
∑
m

eikm |m〉⊗ |u(k)〉
]π

−π

+
i

2π

∫
π

−π

dk∑
m

eikm |m〉⊗ |∂ku(k)〉

=
i

2π

∫
π

−π

dk∑
m

eikm |m〉⊗ |∂ku(k)〉 . (3.12)

We find that the center of the Wannier state |w( j)〉 is

〈w( j)| x̂ |w( j)〉= i
2π

∫
π

−π

dk 〈u(k) | ∂ku(k)〉+ j. (3.13)

The second term in this equation shows that the centers of the Wannier states are
equally spaced, at a distance of one unit cell from each other. The first term, which
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is the Berry phase (divided by 2π) of the occupied band across the Brillouin zone,
cf. Eq. (2.53), corresponds to a uniform displacement of each Wannier state by the
same amount.

We define the bulk electric polarization to be the Berry phase of the occupied band
across the Brillouin zone, the first term in Eq. (3.13),

Pelectric =
i

2π

∫
π

−π

dk 〈u(k) | ∂ku(k)〉 . (3.14)

Although the way we derived this above is intuitive, it remains to be shown that this is
a consistent definition. From Chapt. 2, it is clear that a gauge transformation can only
change the bulk electric polarization by an integer. We will show explicitly in Chapt. 5
that the change of this polarization in a quasi-adiabatic process correctly reproduces
the bulk current.

3.1.1 Wannier states using the projected position operator

A numerically stable, gauge invariant way to find a tightly localized set of Wannier
states is using the unitary position operator[28],

X̂ = eiδk x̂. (3.15)

This operator is useful, because it fully respects the periodic boundary conditions of the
ring. The eigensystem of X̂ consists of eigenstates localized in cell m with eigenvalue
eiδkm. Thus, we can associate the expectation value of the position in state |Ψ〉 with the
phase of the expectation value of X̂ ,

〈x〉= N
2π

Im log〈Ψ| X̂ |Ψ〉 . (3.16)

The real part of the logarithm carries information about the degree of localization[28,
1].

In order to obtain the Wannier states, we restrict the unitary position operator to the
filled bands, defining

X̂P = P̂X̂ P̂. (3.17)

We will show below that in the thermodynamic limit of N→ ∞, the eigenstates of the
projected position operator X̂P form Wannier states.

To simplify the operator X̂P, consider

〈
Ψ(k′)

∣∣ X̂ |Ψ(k)〉= 1
N

N

∑
m′=1

e−im′k′ 〈m′∣∣⊗〈u(k′)∣∣ N

∑
m=1

eiδkmeimk |m〉⊗ |u(k)〉

=
1
N

〈
u(k′)

∣∣ u(k)
〉N−1

∑
m=0

eim(k+δk−k′) = δk+δk,k′ 〈u(k+δk) | u(k)〉 (3.18)
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where δk+δk,k′ = 1 if k′ = k+δk, and 0 otherwise. Using this, we have

X̂P = ∑
k′k

∣∣Ψ(k′)
〉〈

Ψ(k′)
∣∣ X̂ |Ψ(k)〉〈Ψ(k)|

= ∑
k
〈u(k+δk) | u(k)〉 · |Ψ(k+δk)〉〈Ψ(k)| . (3.19)

We can find the eigenvalues of X̂P using a direct consequence of Eq. (3.19), namely,
that raising X̂P to the Nth power gives an operator proportional to the unity in the
occupied subspace, (

X̂P
)N

=W P̂. (3.20)

We will refer to the constant of proportionality, W ∈ C, given by

W = 〈u(2π) | u(2π−δk)〉 · . . . · 〈u(2δk) | u(δk)〉〈u(δk) | u(2π)〉 , (3.21)

as the Wilson loop. Note that W is very similar to a discrete Berry phase, apart from
the fact that |W | ≤ 1 (although limN→∞ |W |= 1). The spectrum of eigenvalues of X̂P is
therefore composed of the Nth roots of W ,

λn = einδk+log(W )/N , with n = 1, . . . ,N; =⇒ λ
N
n =W. (3.22)

These eigenvalues have the same magnitude |λn|= N
√
|W |< 1, and phases in the inter-

val [0,2π), spaced by δk. Because 〈w( j)| X̂P |w( j)〉 = 〈w( j)| X̂ |w( j)〉, the magnitude
tells us about the localization properties of the Wannier states, and the phases can be
interpreted as position expectation values.

We now check whether eigenstates of X̂P fulfil the properties required of Wannier
states, Eq. (3.8). The relation (X̂P)

N = WP̂ above shows that eigenvectors of X̂P span
the occupied subspace. The eigenstates are related by translation, since

Ŝ†X̂PŜ = eiδk X̂P; (3.23)

X̂P |Ψ〉= |W |1/N eiα |Ψ〉 ; (3.24)

X̂PŜ |Ψ〉= |W |1/N eiα+δk Ŝ |Ψ〉 . (3.25)

There is a problem with the orthogonality of the eigenstates though. We leave the proof
of localization as an exercise for the reader.

The projected unitary position operator X̂P is a normal operator only in the thermo-
dynamic limit of N→ ∞. For finite N, it is not normal, i.e., it does not commute with
its adjoint, and as a result, its eigenstates do not form an orthonormal basis. This can
be seen as a discretization error.

3.2 Inversion symmetry and polarization
For single-component, continuous-variable wavefunctions Ψ(r), inversion about the
origin (also known as parity) has the effect Ψ(r)→ Π̂Ψ(r) = Ψ(−r). Two important
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properties of the unitary operator Π̂ representing inversion follow: Π̂2 = 1, and Π̂eikr =
e−ikr. A Hamiltonian has inversion symmetry if Π̂ĤΠ̂† = Ĥ.

When generalizing the inversion operator to lattice models of solid state physics
with internal degrees of freedom, we have to keep two things in mind.

First, in a finite sample, the edges are bound to break inversion symmetry about the
origin (except for very fine-tuned sample preparation). We therefore only care about
inversion symmetry in the bulk, and require that it take |k〉 → |−k〉.

Second, each unit cell of the lattice models we consider also has its internal Hilbert
space, which can be affected by inversion. This includes spin components (untouched
by inversion) and orbital type variables (affected by inversion) as well. In general, we
represent the action of inversion on the internal Hilbert space by a unitary operator π̂

independent of the unit cell.
The inversion operator is represented on the bulk Hamiltonian of a lattice model by

an operator Π̂, which acts on Hinternal as π̂ ,

Π̂ |k〉⊗ |u〉= |−k〉⊗ π̂ |u〉 ; (3.26)

π̂
2 = π̂

†
π̂ = Iinternal. (3.27)

The action of the inversion operator on the bulk momentum-space Hamiltonian can be
read off using its definition,

Π̂Ĥ(k)Π̂−1 = Π̂〈k| Ĥbulk |k〉Π̂−1 = 〈−k|Π̂ĤbulkΠ̂
−1 |−k〉= π̂Ĥ(−k)π̂†. (3.28)

A lattice model has inversion symmetry in the bulk, if there exists a unitary and
Hermitian π̂ acting on the internal space, such that

π̂Ĥ(−k)π̂ = Ĥ(k). (3.29)

If all occupied bands can be adiabatically separated in energy, so we can focus on
one band, with wavefunction |u(k)〉, inversion symmetry has a simple consequence.
The eigenstates at −k and k are related by

Ĥ(k) |u(k)〉= E(k) |u(k)〉 =⇒ Ĥ(−k)π̂ |u(k)〉= E(k)π̂ |u(k)〉 ; (3.30)

=⇒ |u(−k)〉= eiφ(k)
π̂ |u(k)〉 . (3.31)

For the wavenumbers k = 0 and k = π , the so-called time-reversal invariant momenta,
this says that they have states with a definite parity,

π̂ |u(0)〉= p0 |u(0)〉 ; π̂ |u(π)〉= pπ |u(π)〉 , (3.32)
with p0 =±1; pπ =±1. (3.33)

3.2.1 Quantization of the Wilson loop due to inversion symmetry
We now rewrite the Wilson loop W of a band of an inversion-symmetric one-dimensional
Hamiltonian, assuming we have a discretization into a number 2M of k-states, labeled
by j =−M+1, . . . ,M, as∣∣u j

〉
=

{
|u(2π + jδk)〉 if j ≤ 0;
|u( jδk)〉 , otherwise.

(3.34)
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We use Eq. (3.31), which takes the form∣∣u− j
〉
= eiφ j π̂

∣∣u j
〉
. (3.35)

The Wilson loop W of a band of an inversion symmetric one-dimensional insulator
can only take on the values ±1. We show this, using M = 3 as an example,

W = 〈uM | u2〉〈u2 | u1〉〈u1 | u0〉〈u0 | u−1〉〈u−1 | u−2〉〈u−2 | uM〉
= 〈uM | u2〉〈u2 | u1〉〈u1 | u0〉〈u0|eiφ1 π̂ |u1〉
〈u1| π̂e−iφ1eiφ2 π̂ |u2〉〈u2| π̂e−iφ2 |uM〉

= 〈u1 | u0〉〈u0| π̂ |u1〉〈u2| π̂ |uM〉〈uM | u2〉= p0 pπ (3.36)

W = 〈uM | uM−1〉 . . .〈u1 | u0〉〈u0 | u−1〉 . . .〈u−M+1 | uM〉
= 〈uM | uM−1〉 . . .〈u1 | u0〉〈u0|eiφ1 π̂ |u1〉

〈u1| π̂e−iφ1eiφ2 π̂ |u2〉〈u2| π̂e−iφ2 eiφ3 π̂ |u3〉 . . .〈uM+1| π̂e−iφM+1 |uM〉
= 〈u1 | u0〉〈u0| π̂ |u1〉〈uM−1| π̂ |uM〉〈uM | uM−1〉=±1 (3.37)

The statement about the Wilson loop can be translated to the bulk polarization,
using Eq. (3.14). Each band of an inversion symmetric one-dimensional insulator con-
tributes to the bulk polarization 0 or 1/2.

Problems
Inversion symmetry of the SSH model
Does the SSH model have inversion symmetry? If it has, then provide the correspond-
ing local operator acting in the internal Hilbert space.

Eigenstates of the projected position operator are localized
In Sect. 3.1.1, it is claimed that the eigenstates of the projected position operator X̂P
form a Wannier set. One necessary condition for that statement to be true is that the
eigenstates are localized, see Eq. (3.8d). Prove this.



Chapter 4

Adiabatic charge pumping,
Rice-Mele model

* We apply the Berry phase and the Chern number to show that the periodically and
slowly changing the parameters of a one-dimensional solid, it is possible to pump parti-
cles in it. The number of particles (charge) pumped is an integer per cycle, that is given
by a Chern number. Along the way we will introduce important concepts of edge state
branches of the dispersion relation, and bulk–boundary correspondence. Since we are
working towards understanding time-independent topological insulators, this chapter
might seem like a detour. However, bulk–boundary correspondence of 2-dimensional
Chern insulators, at the heart of the theory of topological insulators, is best understood
via a mapping to an adiabatic charge pump. The concrete system we use in this chapter
is the simplest adiabatic charge pump, obtained by adding staggered onsite potential to
the SSH model. It is known as the Rice-Mele (RM) model.

We now apply the Berry phase and the Chern number to show that the periodically
and slowly changing the parameters of a one-dimensional solid, it is possible to pump
particles in it. The number of particles (charge) pumped is an integer per cycle, that
is given by a Chern number. Along the way we will introduce important concepts
of edge state branches of the dispersion relation, and bulk–boundary correspondence.
Since we are working towards understanding time-independent topological insulators,
this Chapter might seem like a detour. However, bulk–boundary correspondence of
2-dimensional Chern insulators, at the heart of the theory of topological insulators, is
best understood via a mapping to an adiabatic charge pump. The concrete system we
use in this Chapter is the simplest adiabatic charge pump, the time-dependent version
of the Rice-Mele (RM) model,

Ĥ(t) = v(t)
N

∑
m=1

(
|m,B〉〈m,A|+h.c.

)
+w(t)

N−1

∑
m=1

(
|m+1,A〉〈m,B|+h.c.

)
+u(t)

N

∑
m=1

(
|m,A〉〈m,A|− |m,B〉〈m,B|

)
, (4.1)

47
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with the staggered onsite potential u, intracell hopping amplitude v, and intercell hop-
ping amplitude w all assumed to be real and periodic functions of time t. In this Chap-
ter, we are going to see how, by properly choosing the time sequences, we can ensure
that particles are pumped along the chain.

4.1 Charge pumping in a control freak way
The most straightforward way to operate a charge pump in the Rice-Mele model is to
make sure that the system falls apart at all times to disconnected dimers. This will
happen if at any time either the intercell hopping amplitude w, or the intracell hopping
amplitude v vanishes. We can then use the staggered onsite potential to nudge the
lower energy eigenstate to the right. If during the whole cycle we keep a finite energy
difference between the two eigenstates, we can do the cycle slowly enough to prevent
excitation.

Adiabatic shifting of charge on a dimer

As a first step towards the charge pumping protocol, consider a single dimer, i.e., N = 1.
Using the adiabatic limit introduced in the last chapter, we can shift charge from one
site to the other. The Hamiltonian reads

Ĥ(t) = u(t)σ̂z + v(t)σ̂x, (4.2)

with no hopping allowed at the beginning and end of the cycle, at t = 0, we have
u = 1; v = 0; and at t = T , u =−1; v = 0;.

We initialize the system in the ground state, which at time t = 0 corresponds to |A〉,
a particle on site A. Then we switch on the hopping, which allows the particle to spill
over to site B, and once it has done that, we switch the hopping off. To ensure that
the particle spills over, we raise the onsite potential at A and lower it at B. A practical
choice is

u(t) = cos(πt/T ); v(t) = sin(πt/T ), (4.3)

whereby the energy gap is at any time 2. According to the adiabatic theorem, if H(t) is
varied slowly enough, we will have shifted the charge to B at the end of the cycle.

Putting together the control freak sequence

Once we know how to shift a particle from |m,A〉 to |m,B〉, we can use that to shift
the particle further from |m,B〉 to |m+1,A〉. For simplicity, we take a sequence con-
structed from linear ramps of the amplitudes, using the function f : [0,1)→ R:

f (x) =


8x, if x≤ 1/8
1, if 1/8≤ x < 3/8
1−8(x−3/8), if 3/8≤ x < 1/2
0, otherwise

(4.4)
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One period of the pump sequence, for 0≤ t < T , reads

u(t) = f (t/T )− f (t/T + 1
2 ); (4.5a)

v(t) = 2 f (t/T + 1
4 ); (4.5b)

w(t) = f (t/T − 1
4 ). (4.5c)

This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we shifted
the beginning time of the sequence: now at times t/T = n ∈ Z, the Hamiltonian is the
trivial SSH model, t/T = n+1/4, disconnected monomers, at times t/T = n+1/2, it
is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads

Ĥ(k, t) = d(k, t)σ̂ = (v(t)+w(t)cosk)σ̂x +w(t)sinkσ̂y +u(t)σ̂z, (4.6)

which can be represented graphically as the path of the vector d(k, t) as the quasimo-
mentum goes through the Brillouin zone, k : 0→ 2π , for various fixed values of time t,
as in Fig. 4.1 (b).

Visualizing the motion of energy eigenstates

We can visualize the effects of the control freak pumps sequence in the Rice-Mele
model by tracing the trajectories of the energy eigenstates. At any time t, each instan-
taneous energy eigenstate can be chosen confined to a single dimer: either on a single
unit cell, or shared between two cells. In both cases, we can associate a position with
the energy eigenstates: the expectation value of the position operator x̂ defined as per
Eq. (3.9).

The trajectories of energy eigenstates in the position-energy space, Fig. 4.2, show
that the charge pump sequence works rather like a conveyor belt for the eigenstates. We
engineered the sequence as a unitary operation that pushes all negative energy states
in the bulk to the right at the rate of one unit cell per cycle (a current of one particle
per cycle). These orthogonal states, one by one, are pushed into the right end region,
which has only room for one energy eigenstate. Eigenstates cannot pile up in the
right end region: if they did, this would violate unitarity of the time evolution operator
U(t) =Te−i

∫ t
0 H(t ′)dt ′ , where T stands for time ordering, since initially orthogonal states

would acquire finite overlap. So, states pumped to the right edge have to go somewhere,
and the only direction they can go is back towards the bulk. This on the other hand is
only possible, if they acquire enough energy to be in the upper band, since all states in
the lower band in the bulk are pushed towards the right. Moreover, in order to carry
these states away from the right edge, and make room for those coming from the bulk,
the pump sequence has to push upper band bulk states towards the left.

To summarize, the control freak pump sequence is characterized by three state-
ments. The protocol

• in the bulk, pushes all E < 0 eigenstates rightwards, by 1 unit cell per cycle,

• at the right end, pushes 1 eigenstate per cycle with E < 0 to E > 0,

• in the bulk, pushes all E > 0 eigenstates leftwards, by 1 unit cell per cycle.

If any one of these statements holds, the other two must also hold as a consequence.
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Figure 4.1: The control freak pump sequence in the Rice-Mele model. The sequence
is defined via Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes
v, w and the sublattice potential u. (b) The surface formed by the vector d(k, t) corre-
sponding to the bulk momentum-space Hamiltonian. The topology of the surface is a
torus, but its parts corresponding to t ∈ [0,0.25]T and t ∈ [0.75,1]T are infinitely thin
and appear as a line due to the vanishing value of w in these time intervals. (c) Instan-
taneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10 sites. Red (blue)
points represent states that are localized in the rightmost (leftmost) unit cells and have
energies between -1 and 1.
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Figure 4.2: An instantaneous energy eigenstate of the control freak pump sequence, as
it is pumped through the system. At negative (positive) energy, it is pumped towards
the right (left), upon reaching the right (left) end, it is pumped into the upper (lower)
band. .

Edge states in the instantaneous spectrum

We can see the charge pump at work indirectly – via its effect on the edge states – using
the instantaneous spectrum, the eigenvalues of H(t) of the open chain. An example is
shown for the control freak pump sequence of the Rice-Mele model on a chain of 10
unit cells (20 sites) in Fig. 4.1. Due to the special choice of the control freak sequence,
the bulk consists of N−1-fold degenerate states (the bands are flat). More importantly,
there is an energy gap separating the bands, which is open around E = 0 at all times.
However, there are branches of the spectrum crossing this energy gap, which must
represent edge states.

To assign “right” or “left” labels to edge states in the instantaneous spectrum, it is
necessary to examine the corresponding wavefunctions. In case of the control freak
pump sequence, right (left) edge state wavefunctions are localized on the m = N (
m = 1) unit cells, and the corresponding energy values are highlighted in green (red).
The edge state branches in the dispersion in Fig. 4.1. clearly show that 1 state per cycle
is pushed up in energy at the right edge.

4.2 Moving away from the control freak limit

We will now argue that the number of particles pumped by a cycle of a periodic adia-
batic modulation of an insulating chain is an integer, even if the control freak attitude
is relaxed. In the generic case, the energy eigenstates are delocalized over the whole
bulk, and so we will need new tools to keep track the charge pumping process. The ro-
bust quantization of charge pumping was shown by Thouless, who calculated the bulk
current directly: we defer this calculation to the next Chapter, and here argue using
adiabatic deformations.

As an example for a generic periodically modulated insulator, we take the Rice-
Mele model, but we relax the control freak attitude. We consider a smooth modulation
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sequence,

u(t) = sinΩt; (4.7a)
v(t) = v+ cosΩt; (4.7b)
w(t) = 1, (4.7c)

where the sequence is fixed by choosing the average value of the intracell hopping, v.
With v = 1, this sequence can be obtained by an adiabatic deformation of the control
freak sequence. We show the smooth pump sequence and its representation in the d
space for v = 1 in Fig. 4.3.

Edge states in the instantaneous spectrum

Consider the spectrum of the instantaneous energies on an open chain, with an example
for N = 20 unit cells shown in Fig. 4.3. Since this charge sequence was obtained by adi-
abatic deformation of the control freak sequence above, each branch in the dispersion
relation is deformed continuously from a branch in Fig. 4.1.

The edge states are no longer confined to a single unit cell, as in the control freak
case. However, as long as their energy lies deep in the bulk band gap, they have wave-
functions that decay exponentially towards the bulk, and so they can be unambiguously
assigned to the left or the right end. (In case of a degeneracy between edge states at
the right and left end, we might find a wavefunction with components on both ends. In
that case, however, restriction of that state to the left/right end results in two seperate
eigenstates, to a precision that is exponentially high in the bulk length). In Fig. 4.3 we
used the same simple criterion as in Chapt. 1 to define edge states:

|Ψ〉 is on the right edge ⇔
N

∑
m=N−1

(
|〈Ψ | m,A〉|2 + |〈Ψ | m,B〉|2

)
> 0.6; (4.8)

|Ψ〉 is on the left edge ⇔
2

∑
m=1

(
|〈Ψ | m,A〉|2 + |〈Ψ | m,B〉|2

)
> 0.6. (4.9)

As in the control freak case, there is a branch of energy eigenstates crossing over from
E < 0 to E > 0 at the right edge, and from E > 0 to E < 0, at the left.

We can define the edge spectrum to consist of edge state branches of the dispersion
relation, that are clearly assigned to the right end. More precisely, we take two limiting
energies, ε− and ε+, deep in the bulk gap, and only consider energy eigenstates of
the open chain with eigenvalues En(t) between these limits, ε− < En(t) < ε+, with
eigenstates localized at the right edge. Each edge state branch can begin (1) at t = 0,
as a continuation of another (or the same) edge state branch ending at t = T , or (2)
at E = ε−, or (3) at E = ε+. Each edge state branch can end (1) at t = T , to then
continue in another (or the same) edge state branch at t = 0, or (2) at E = ε−, or (3) at
E = ε+. That is 9 possible types of edge state branches. Taking into account that the
edge state spectrum, like the total spectrum, has to be periodic in t, the number of edge
state branches entering the energy range ε− < E < ε+ during a cycle is equal to the
number of branches leaving it.
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Figure 4.3: The smooth pump sequence of the Rice-Mele model for v̄= 1. The hopping
amplitudes and the sublattice potential (a) are varied smoothly as a function of time.
The vector d(k, t) corresponding to the bulk momentum-space Hamiltonian (b) traces
out a torus in the 3-dimensional space. Instantaneous spectrum of the Hamiltonian Ĥ(t)
on an open chain of N = 10 sites (c) reveals that during a cycle, one state crosses over
to the upper band on the right edge, and one to the lower band on the left edge (dark
red/light blue highlights energies of edge states, whose wavefunctions have than 60%
weight on the rightmost/leftmost 2 unit cells). The wavefunctions of the edge states
(d,e) are exponentially localized to one edge and have support overwhelmingly on one
sublattice each. In contrast a typical bulk state (f) has a delocalized wavefunction with
support on both sublattices. .
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The net number of edge states pumped in energy is a topological invariant

We now define an integer Q, that counts the number of edge states pumped up in energy
across at the right edge. Although this quantity is not easily represented by a closed
formula, it is straightforward to read it off from the dispersion relation of an open
system. We restrict our attention to the neighbourhood of an energy ε deep in the bulk
gap around E = 0, such that at all points where En = ε , the derivative dEn/dt does not
vanish. Then every edge state energy branch entering this neighborhood crosses E = ε

either towards E > ε or towards E < ε . During one cycle, we define for the states at
the right edge

N+ = number of times E = ε is crossed from E < ε to E > ε; (4.10)
N− = number of times E = ε is crossed from E > ε to E < ε; (4.11)

Q = N+−N− = net number of edge states pumped up in energy . (4.12)

Note that within the gap, Q is independent of the choice of ε . If we found a value Q0
at E = ε0, but a different Q1 6= Q0 at E = ε1 > ε0, this would require a net number
Q0−Q1 of edge state branches at the right edge to enter the energy region ε0 < E < ε1
during a cycle but never exit it. Since both ε0 and ε1 are deep in the bulk gap, away
from the bulk bands, this is not possible.

The net number of edge states pumped up inside the gap on the right edge, Q, is
a topological invariant: its value cannot change under continuous deformations of the
Hamiltonian H(t) that preserve the bulk gap. This so-called topological protection is
straightforward to prove, by considering processes that might change this number. We
do this using Fig. 4.4.

The number of times edge state branches intersect E = 0 can change because new
intersection points appear. These can form because an edge state branch is deformed,
and as a result, it gradually develops a “bump”, local maximum, and the local max-
imum gets displaced from E < 0 to E > 0. For a schematic example, see Fig. 4.4
(a)-(c). Alternatively, the dispersion relation branch of the edge state can also form a
local minimum, gradually displaced from E > 0 to E < 0. In both cases, the number
of intersections of the edge band with the E = 0 line grows by 2, but the two new in-
tersections must have opposite pump directions. Therefore, both N+ and N− increase
by 1, but their difference, Q = N+−N−, stays the same.

New intersection points can also arise because a new edge state branch forms. As
long as the bulk gap stays open, though, this new edge state band has to be a deformed
version of one of the bulk bands, as shown in Fig. 4.4 (a)-(h)-(i). Because the periodic
boundary conditions must hold in the Brillouin zone, the dispersion relation of the new
edge state has to “come from” a bulk band and go back to the same bulk band, or it
can be detached from the bulk band, and be entirely inside the gap. In both cases, the
above argument applies, and it has to intersect the E = 0 line an even number of times,
with no change of Q.

The number of times edge state branches intersect E = 0 can also decrease if two
edge state branches develop an energy gap. However, to open an energy gap, the edge
states have to be pumped in opposite directions. For states pumped in the same direc-
tion, energy crossing between them can become an avoided crossing, but no gap can
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Figure 4.4: Adiabatic deformations of dispersion relations of edge states on one edge,
in an energy window that is deep inside the bulk gap. Starting from a system with 3
copropagating edge states (a), an edge state’s dispersion relation can develop a “bump”,
(b)-(c). This can change the number of edge states at a given energy (intersections
of the branches with the horizontal line corresponding to the energy), but always by
introducing new edge states pairwise, with opposite directions of propagation. Thus
the signed sum of edge states remains unchanged. Alternatively, two edge states can
develop a crossing, that because of possible coupling between the edge states turns into
an avoided crossing (d),(f). This cannot open a gap between branches of the dispersion
relation (e), as this would mean that the branches become multivalued functions of the
wavenumber kx (indicating a discontinuity in E(kx), which is not possible for a system
with short-range hoppings). Therefore, the signed sum of edge states is also unchanged
by this process. One might think the signed sum of edge states can change if an edge
state’s direction of propagation changes under the adiabatic deformation, as in (g).
However, this is also not possible, as it would also make a branch of the dispersion
relation multivalued. Deformation of the Hamiltonian can also form a new edge state
dispersion branch, as in (a)-(h)-(i), but because of periodic boundary conditions along
kx, this cannot change the signed sum of the number of edge states.
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be opened, as this would violate the single-valuedness of a dispersion relation branch,
as illustrated in Fig. 4.4 (d)-(f). This same argument shows why it is not possible for
an edge state to change its direction of propagation under an adiabatic deformation
without developing a local maximum or minimum (which cases we already consid-
ered above). As shown in Fig. 4.4 (g), this would entail that at some stage during the
deformation the edge state branch was not single valued.

4.3 Tracking the charges with Wannier states

Electrons in a solid are often described via Bloch states delocalized over the whole
lattice. As we have seen in Sect. 3.1 though, one can represent a certain energy band
with a set of Wannier states, which inherit the spatial structure (discrete translational
invariance) of the lattice, and are well localized. Therefore, it seems possible to visu-
alize the adiabatic pumping process by following the adiabatic motion of the Wannier
functions as the parameters of the lattice Hamiltonian are varied in time.

In fact, we will describe the adiabatic evolution of both the position and energy
expectation values of the Wannier functions. By this, the toolbox for analyzing the
adiabatic pumping procedure for control-freak-type pumping is extended to arbitrary
pumping sequences.

4.3.1 Plot the Wannier centers

According to the result (3.13), the Wannier center positions of a certain band, in units of
the lattice constant, are given by the Berry phase of that band divided by 2π . Hence, to
follow the motion of the Wannier centers during the pumping procedure, we calculate
the Berry phase of the given band for each moment of time.

The numerically computed Wannier-center positions obtained for the smoothly
modulated Rice-Mele sequence [defined via Eqs. (4.6) and (4.7)]. , with v̄ = 1, on
a finite lattice, are shown in Fig. 4.5a. Solid (dotted) lines correspond to Wannier
states of the valence (conduction) band. The results show that during a complete cycle,
each Wannier center of the valence (conduction) band moves to the right (left) with a
single lattice constant. Figure 4.5b shows time evolution of the position and energy ex-
pectation value of a single Wannier center in the valence/conduction band, over a few
complete cycles. In complete analogy with control-freak pumping, these results sug-
gest that the considered pumping sequence operates as a conveyor belt: it transports
valence-band electrons from left to right, with a speed of one lattice constant per cycle,
and would transport conduction-band electrons, if they were present, from right to left,
with the same pace.

An important result, which is not specific to the considered pumping cycle, arises
from the above considerations. As pumping is cyclic, the Berry phase of a given band
at t = 0 is equivalent to that at t = T . Therefore, the displacement of the Wannier center
during a complete cycle is an integer.
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Figure 4.5: Time evolution of Wannier centers and Wannier energies in a smoothly
modulated topological Rice-Mele pumping sequence [defined via Eqs. (4.6) and (4.5)].
The parameter of the sequence is v̄ = 1, corresponding to a Chern number of 1. In both
subfigures, a solid (dotted) line corresponds to the valence (conduction) band. (a) Time
evolution of the Wannier centers of the bands. During a cycle, each Wannier center of
the valence (conduction) band moves to the right (left) with a single lattice constant.
(b) Time evolution of the position and energy expectation value of a single Wannier
center in the valence/conduction band, over a few complete cycles.

4.3.2 Number of pumped particles is the Chern number
Our above results for the smoothly modulated Rice-Mele cycle suggest the interpreta-
tion that during a complete cycle, each electron in the filled valence band is displaced
to the right by a single lattice constant. From this interpetation, it follows that the
number particles pumped from left to right, through an arbitrary cross section of the
lattice, during a complete cycle, is one. Generalizing this consideration for arbitary
one-dimensional lattice models and pumping cycles, it suggests that the number of
pumped particles is an integer.

We now shown that this integer is the Chern number associated to the valence
band, that is, to the ground-state manifold of the time-dependent bulk momentum-space
Hamiltonian Ĥ(k, t). To prove this is, we first write the Wannier-center displacement
∆x0,T for the complete cycle by splitting up the cycle [0,T ] to small pieces ∆t:

∆x0,T = lim
n→∞

n−1

∑
j=0

∆xt j ,t j+∆t , (4.13)

where ∆t = T/n and t j = j∆t. Then, we express the infinitesimal displacements with
the Berry phases,

∆x(t j, t j +∆t) =
i

2π

∫
π

−π

dk
[〈

un(t j +∆t)
∣∣ ∂kun(t j +∆t)

〉
−
〈
un(t j)

∣∣ ∂kun(t j)
〉]
,

(4.14)

where the k argument is suppressed for brevity. Since the k = −π and k = π values
are equivalent, the above integral can be considered as a line integral of the Berry
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connection on the closed boundary line ∂R j of the infinitesimally narrow rectangle
(k, t) ∈ R j = [−π,π)× [t j, t j +∆t]; that is,

∆x(t j, t j +∆t) =
1

2π

∮
∂R j

A(n) ·dR. (4.15)

Using the fact that we can choose a gauge that is locally smooth on that rectangle R j,
we obtain

∆x(t j, t j +∆t) =
1

2π

∫
R j

B(n)dkdt, (4.16)

where B(n) is the Berry curvature associated to the nth eigenstate manifold of Ĥ(k, t).
Together with Eq. (4.13), this result ensures that the Wannier-center displacement is
the Chern number:

∆x0,t =
1

2π

∮
π

−π

B(n)dkdt. (4.17)

Note that even though we have not performed an explicit calculation of the valence-
band Chern number of the smooth Rice-Mele pump cycle with v̄ = 1, by looking at the
motion of the corresponding Wannier centers we can conclude that the Chern number
is 1.

4.3.3 Tuning the pump using the average intracell hopping ampli-
tude v

So far, the discussed results were obtained special case of the smoothly modulated
Rice-Mele pumping cycle with average intracell hopping v̄ = 1. Now we ask the ques-
tion: can the number of pumped particles be changed by tuning the parameter v̄? To
show that the answer is affirmative and the pump has such a tunability, on Fig. 4.6a
we plot the instantaneous energy spectrum corresponding to v̄ = −1. The spectrum
reveals that this sequence, similarly to the v̄ = 1 case, does pump a single particle per
cycle. However, the direction of pumping is opposite in the two cases: Fig. 4.6a shows
that during a cycle, one edge state on the left (light blue) crosses over from the valence
band to the conduction band, revealing that the particles are pumped from right to left
in the valence band.

4.3.4 Robustness against disorder
So far, we have the following picture of an adiabatic pump in a long open chain. If we
take a cross section at the middle of the chain, a single particle will be pumped through
that, from left to right, during a complete cycle. This implies that at the end of the
cycle, the number of particles on the right side of the cross section has grown by one,
therefore the final state reached by the electron system is different from the original,
ground state. This implies that during the course of the cycle, a valence-band energy
eigenstate deformed into a conduction-band state, and that occured on the right edge of
the chain; the opposite happens on the left edge.
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Figure 4.6: The smooth pump sequence of the Rice-Mele model for ν̄ =−1, revealing
reversed pumping with respect to the ν̄ = 1 case. (a) Instantaneous spectrum of the
Hamiltonian Ĥ(t) on an open chain of N = 10 sites. During a cycle, one edge state
on the left (light blue) crosses over from the valence to the conduction band, revealing
that there is a single particle per cycle is pumped from right to left in the valence band.
Wavefunctions of the edge states (b,c) as well as a typical bulk state (d) are also shown.

Does that qualitative behavior change if we introduce disorder in the edge regions
of the open chain? No: as long as the bulk of the chain remains regular, the pump works
at the middle of the chain, and therefore the above conclusion about the exchange of a
pair of states between the valence and conduction bands still holds. On the other hand,
introducing disorder in the bulk seems to complicate the above-developed description
of pumping in terms of Wannier-center motion, and therefore might change number of
edge states and the qualitative nature of the instantaneous energy spectrum.

Problems
Further control-freak pump cycles
Construct a control-freak pump cycle where the spectrum of the bulk does not change
during the entire cycle, and the pumped charge is (a) zero (b) one.
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Chapter 5

Current operator and particle
pumping

* In the previous chapter, we described quantized adiabatic pumping of particles in
a one-dimensional lattice in an intuitive and visual fashion, using the concepts of the
control-freak pumping cycle and the time evolution of the Wannier centers. Here, we
provide a more formal description of the same effect. We identify the current op-
erator describing the flow of probability density through a cross section of the one-
dimensional lattice, and find that the momentum- and time-resolved current in a given
filled band of the lattice is proportional to the Berry curvature associated to that band.
Naturally, this leads to the same conclusion as we have seen before: that the number
of particles adiabatically pumped through a cross section of the crystal is given by the
Chern number of the corresponding filled band, and therefore it is an integer. current.

In the previous chapter, we described quantized adiabatic pumping of particles in
a one-dimensional lattice in an intuitive and visual fashion, using the concepts of the
control-freak pumping cycle and the time evolution of the Wannier centers. Here, we
provide a more formal description of the same effect. For simplicity, we consider two-
band insulator lattice models with a completely filled lower band, which are described
by a periodically time-dependent bulk momentum-space Hamiltonian of the form

Ĥ(k, t) = d(k, t) · σ̂ , (5.1)

where d(k, t) is a dimensionless three-dimensional vector, and σ̂ is the vector of Pauli
matrices. We require |d(k, t)| ≥ 1, whereby the minimal energy gap between the two
eigenstates of the Hamiltonian is greater than 2. This Hamiltonian is periodic both in
momentum and in time,

Ĥ(k+2π, t) = Ĥ(k, t +T ) = Ĥ(k, t), (5.2)

where T denotes the time period, and the corresponding frequency is denoted by

Ω≡ 2π

T
. (5.3)

61
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We call the periodically time-dependent Hamiltonian quasi-adiabatic, if Ω� 1, and
the adiabatic limit is defined as Ω→ 0, that is, T → ∞.

For example, d can be chosen as

d(k, t) =

 v̄+ cosΩt + cosk
sink

sinΩt

 , (5.4)

corresponding to the smoothly modulated Rice-Mele model, see Eq. (4.7) and Eq. (4.6).
We will denote the eigenstate of Ĥ(k, t) with lower energy eigenvalue as |u1(k, t)〉,

the one with higher energy eigenvalue as |u2(k, t)〉. With this notation, we can express
the central result of this chapter: the momentum- and time-resolved current carried by
the electrons of the filled band equals the Berry curvature associated to that band. As a
consequence, the number Q of particles pumped through an arbitrary cross section of
an infinite one-dimensional crystal during a complete adiabatic cycle is the momentum-
and time integral of the Berry curvature, that is,

Q =−i
1

2π

∫ T

0
dt
∫

π

−π

dk (∂k 〈u1(k, t)|∂tu1(k, t)〉−∂t 〈u1(k, t)|∂ku1(k, t)〉) . (5.5)

This is the Chern number associated to the ground-state manifold of Ĥ(k, t). As the
latter is an integer, the number of pumped particles is quantized. This result was dis-
covered by David Thouless [33].

We derive Eq. (5.5) via the following steps. In Sect. 5.1, we consider a generic time-
dependent lattice Hamiltonian, we express the number of particles moving through a
cross section of the lattice using the current operator and the time-evolving energy
eigenstates of the lattice. Then, in Sect. 5.2.2, we provide a description of the time-
evolving energy eigenstates of the lattice in the case of periodic and quasi-adiabatic
time dependence of the lattice Hamiltonian. This allows us to express the number of
pumped particles for quasi-adiabatic time dependence. Finally, in Sect. 5.3, building on
the latter result for quasi-adiabatic pumping, we take the adiabatic limit and thereby es-
tablish the connection between the current, the Berry curvature, the number of pumped
particles, and the Chern number.

5.1 Particle current at a cross section of the lattice
Our aim here is to express the number of particles pumped through a cross section of the
lattice, assuming that the time evolution of the Bloch states due to the time dependence
of the Hamiltonian is known. As intermediate steps toward this end, we derive the
real-space current operator and the diagonal matrix elements of the momentum-space
current operator, and establish an important relation between those diagonal matrix
elements and the momentum-space Hamiltonian. For concreteness, we first discuss
these using the example of the Rice-Mele model introduced in the preceding chapter.
It is straightforward to generalize the results for lattice models with a higher number
of internal degrees of freedom; the generalized results are also given below. Finally,
we use the relation between the current and the Hamiltonian to express the number of
pumped particles with the time-evolving states and the Hamiltonian.
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5.1.1 Current operator in the Rice-Mele model
We consider the Rice-Mele model with N� 1 unit cells and periodic boundary condi-
tions. The real-space bulk Hamiltonian Ĥbulk has the almost the same form as Eq. (3.1),
with the difference that the sum corresponding to intercell hopping runs up to N, and in
accordance with the periodic boundary condition, the unit cell index m should be un-
derstood as (m mod N). The bulk momentum-space Hamiltonian Ĥ(k) of the model
is given in Eq. (4.6).

We will derive the operator that represents the particle current flowing through a
cross section of the one-dimensional crystal. We take a cross section between the pth
and (p+1)th unit cells, and denote the corresponding current operator as ĵp+1/2.

Figure 5.1: A segment enclosed by two cross sections in the one-dimensional SSH
model. The segment S is defined as the part of the chain between the (p+1)th and qth
unit cells. The current operators corresponding to the two cross sections can be estab-
lished by considering the temporal change of the number of particles in the segment.
The dashed line represents the periodic boundary condition.

Influx of particles into a segment of the crystal

To find the current operator, we first consider a segment S of the crystal, stretching
between (and including) the (p+1)th and qth unit cells, where q≥ p+1. The number
of particles in that segment S is represented by the operator

S = {p+1, p+2, . . . ,q−1,q}; (5.6)

Q̂S ≡ ∑
m∈S

∑
α∈{A,B}

|m,α〉〈m,α| . (5.7)

The time evolution of the number of particles in the segment S follows

∂t〈Q̂S〉t =−i〈[Q̂S, Ĥ(t)]〉t . (5.8)

Hence, we identify the operator describing the influx of particles into the segment as

ĵS(t) =−i[Q̂S, Ĥ(t)]. (5.9)

A straightforward calculation shows that Eq. (5.9) implies

ĵS(t) =−iw(t)(|p+1,A〉〈p,B|− |p,B〉〈p+1,A|
+ |q,B〉〈q+1,A|− |q+1,A〉〈q,B|) (5.10)
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Remarkably, the operator ĵS(t) is time dependent, if the hopping amplitude w(t) is time
dependent.

Current operator at a cross section of the crystal

Clearly, the terms in Eq. (5.10) can be separated into two groups: the first two terms
are hopping operators bridging the cross section p+1/2, and the last two terms bridge
the cross section q+1/2. Thereby we define

ĵm+1/2(t)≡−iw(t)(|m+1,A〉〈m,B|− |m,B〉〈m+1,A|) , (5.11)

and use this to express ĵS as

ĵS = ĵp+1/2− ĵq+1/2. (5.12)

This relation allows us to interpret ĵm+1/2(t) as the current operator describing particle
flow, from left to right, across the cross section m+1/2.

Relation of the current operator to the Hamiltonian and to the group velocity

Later we will need the momentum-diagonal matrix elements of the current operator,
which are defined as

ĵm+1/2(k, t) = 〈k| ĵm+1/2(t) |k〉 . (5.13)

For the Rice-Mele model under consideration, these can be expressed using Eqs. (1.8)
and (5.11) as

ĵm+1/2(k, t) =
1
N

(
0 −iw(t)e−ik

iw(t)eik 0

)
. (5.14)

From a comparison of this result and Eq. (4.6), we see that the momentum-diagonal
matrix elements of the current operator are related to the momentum-space Hamilto-
nian as

ĵm+1/2(k, t) =
1
N

∂kĤ(k, t). (5.15)

This is the central result of this section. Even though we have derived it only for the
case of the Rice-Mele model, it is a generic result. A generalization is outlined in the
next section.

In the case of a lattice without an internal degree of freedom, it is easy to see
that Eq. (5.15) establishes the equivalence jm+1/2(k, t) = vk(t)/N between the current
and the (instantaneous) group velocity vk(t): in this case, the bulk momentum-space
Hamiltonian Ĥ(k, t) equals the dispersion relation E(k, t), and its momentum deriva-
tive vk(t) =

∂E(k,t)
∂k is defined as the group velocity of the energy eigenstates. This

correspondence generalizes to lattices with an internal degree of freedom as well. The
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current carried by an instantaneous energy eigenstate |Ψn(k, t)〉 = |k〉 ⊗ |un(k, t)〉 of
such a lattice is

〈un| ĵm+1/2 |un〉=
1
N
〈un|

[
∂kĤ

]
|un〉

=
1
N
〈un|

[
∂k ∑

n′
En′ |un′〉〈un′ |

]
|un〉

=
1
N
{〈un| [(∂kEn) |un〉〈un|+En |∂kun〉〈un|+En |un〉〈∂kun|] |un〉}

=
1
N
(∂kEn +En∂k 〈un|un〉) =

∂kEn

N
=

vn,k

N
, (5.16)

where the arguments (k, t) are suppressed for brevity.

5.1.2 Current operator in a general one-dimensional lattice model
Here we prove Eq. (5.15) in a more general setting. Previously, we focused on the
Rice-Mele model that has only two bands and hopping only between nearest-neighbor
cells. Consider now a general one-dimensional lattice model with Nb bands and finite-
range hopping with range 1 ≤ r � N; here, r = 1 corresponds to hopping between
neighbouring unit cells only. As before, we take a long chain with N � 1 unit cells,
and assume periodic boundary conditions.

The real-space Hamiltonian has the form

Ĥ(t) =
N

∑
m,m′=1

Nb

∑
α,α ′=1

Hmα,m′α ′(t) |m,α〉
〈
m′α ′

∣∣ , (5.17)

where m and m′ are unit cell indices, and α,α ′ ∈ {1,2, . . . ,Nb} correspond to the inter-
nal degree of freedom within the unit cell. Due to the finite-range-hopping assumption,
the Hamiltonian can also be written as

Ĥ(t) =
N

∑
m=1

r

∑
j=−r

Nb

∑
α,α ′=1

Hm+ j,α;m,α ′(t) |m+ j,α〉
〈
mα
′∣∣ . (5.18)

Again, a unit cell index m should be understood as (m mod N). Also, due to the
discrete translational invariance, we have Hm+i,α;m,α ′ = Hiα;0,α ′ , implying

Ĥ(t) =
N

∑
m=1

r

∑
i=−r

Nb

∑
α,α ′=1

Hi,α;0α ′(t) |m+ i,α〉
〈
mα
′∣∣ . (5.19)

The bulk momentum-space Hamiltonian then reads

Ĥ(k, t)≡ 〈k| Ĥ(t) |k〉=
r

∑
m=−r

Hm,α;0,α ′(t)e
−ikm |α〉

〈
α
′∣∣ . (5.20)

Next, we establish the operator representing the particle current flowing through a
cross section of the one-dimensional crystal, the same way we did in Sect. 5.1.1. We
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take a cross section between the pth and (p+ 1)th unit cells, and denote the corre-
sponding current operator as ĵp+1/2.

To find the current operator, we first consider a segment S of the crystal, stretching
between (and including) the (p+1)th and qth unit cells, where q− p≥ r. The number
of particles embedded in that long segment is represented by the operator

Q̂S ≡ ∑
m∈S

Nb

∑
α=1
|mα〉〈mα| . (5.21)

As discussed in the preceding section, we identify the operator describing the influx of
particles into the wire segment as

ĵS(t) =−i[Q̂S, Ĥ(t)]. (5.22)

From this, a straigthforward calculation shows that

ĵS(t) =−i ∑
m∈S

∑
m′ /∈S

Nb

∑
α,α ′=1

[
Hmα,m′α ′(t) |mα〉

〈
m′α ′

∣∣
− Hm′α ′,mα(t)

∣∣m′α ′〉〈mα|
]
. (5.23)

Note that Eq. (5.23) shows that the operator ĵS(t) is constructed only from those
hopping matrix elements of the Hamiltonian that bridge either the p+ 1/2 or the q+
1/2 cross sections of the crystal, i.e., one of the two cross sections that terminate the
segment under consideration. This is ensured by the condition that the segment is at
least as long as the range r of hopping. We have

ĵp+1/2(t) =−i
p+r

∑
m=p+1

p

∑
m′=p+1−r

Nb

∑
α,α ′=1

[
Hmα,m′α ′(t) |mα〉

〈
m′α ′

∣∣ (5.24)

− Hm′α ′,mα(t)
∣∣m′α ′〉〈mα|

]
.

Using this as a definition for any cross section m+ 1/2, we conclude that Eq. (5.12)
holds without any change in this generalized case as well. This conclusion allows us
to interpret ĵm+1/2 as the current operator describing particle flow, from left to right,
across the cross section n+1/2.

After defining the momentum-diagonal matrix elements of the current operator ex-
actly the same way as in Eq. (5.13), the relation between the current operator and the
Hamiltonian has exactly the same form as in Eq. (5.15). This can be proven straight-
forwardly using Eqs. (5.13), (5.24), and the k-derivative of Eq. (5.20).

5.1.3 Number of pumped particles
Let us return to particle pumping in insulating two-band models. As the electrons are
assumed to be noninteracting, and the time-dependent lattice Hamiltonian has a dis-
crete translational invariance for all times, the many-electron state Φ(t) is a Slater de-
terminant of Bloch-type single-particle states

∣∣Ψ̃1(k, t)
〉
= |k〉⊗ |ũ1(k, t)〉 (This should
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be a numbered eq). Here, we adopted the notation introduced in Sect. 1.2, with n = 1
referring to the filled band. There are also two additions with respect to the notation
of Sect. 1.2: first, we explicitly denote the time dependence of the state; second, we
added a tilde here to denote that the state

∣∣Ψ̃1(k, t)
〉

is not an instantaneous lower-band
eigenstate |Ψ1(k, t)〉 of the Hamiltonian, but is slightly different from that due to the
quasi-adiabatic driving.

The number of particles pumped through the cross section m+1/2 within the time
interval t ∈ [0,T ] is the time-integrated current, that is,

Q =
∫ T

0
dt 〈Φ(t)| jM

m+1/2(t) |Φ(t)〉 , (5.25)

where jM
m+1/2(t) is the many-particle generalisation of the current operator defined in

Eq. (5.24), or, for the special case of the Rice-Mele model, in Eq. (5.11)), and Φ(t)
is the many-electron Slater determinant formed by the filled Bloch-type single-particle
states, introduced in the preceding paragraph. Equation (5.25) can be converted to an
expression with single-particle states:

Q =
∫ T

0
dt ∑

k∈BZ

〈
Ψ̃1(k, t)

∣∣ ĵm+1/2(t)
∣∣Ψ̃1(k, t)

〉
, (5.26)

which is related to the momentum-diagonal matrix elements of the current operator as

Q =
∫ T

0
dt ∑

k∈BZ
〈ũ1(k, t)| ĵm+1/2(k, t) |ũ1(k, t)〉 . (5.27)

Finally, this is rewritten using the current-Hamiltonian relation Eq. (5.15) as

Q =
1
N

∫ T

0
dt ∑

k∈BZ
〈ũ1(k, t)|∂kĤ(k, t) |ũ1(k, t)〉 . (5.28)

To evaluate this in the case of adiabatic, periodically time-dependent Hamiltonian, we
first need to understand how the two-level wave functions |ũ1(k, t)〉 evolve in time in
the quasi-adiabatic case; then we can insert those in Eq. (5.28), and take the adiabatic
limit.

5.2 Time evolution governed by a quasi-adiabatic Hamil-
tonian

Our goal here is to describe the time evolution of Bloch-type electronic energy eigen-
states. Nevertheless, as the pumping dynamics preserves the wavenumber k, the task
simplifies to describe the dynamics of distinct two-level systems, labelled by the wavenum-
ber k. Therefore, in this section we discuss the dynamics of a single two-level system,
hence the wavenumber k does not appear in the formulas. We will restore k when
evaluating the number of pumped particles in the next section. To describe the time
evolution of the electronic states subject to quasi-adiabatic driving, it is convenient to
use the so-called parallel-transport gauge or parallel-transport time parametrization,
which we introduce below. Then, our goal is reached by performing perturbation the-
ory in the small frequency Ω� 1 characterizing the quasi-adiabatic driving.
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5.2.1 The parallel-transport time parametrization

As mentioned earlier, the instantaneous energy eigenstates of the bulk momentum-
space Hamiltonian Ĥ(k, t) are denoted as |un(k, t)〉. Here, in order to simplify the
derivations, we will use a special time parametrization (gauge) for these eigenstates,
which is called the parallel-transport time parametrization or parallel-transport gauge.
As mentioned above, we suppress the momentum k.

We will call the smooth time parametrization |un(t)〉 of the instantaneous nth eigen-
state of the Hamiltonian Ĥ(t) a parallel-transport time parametrization, if for any time
point t and any band n, it holds that

〈un(t)|∂t |un(t)〉= 0. (5.29)

Using a time parametrization with this property will simplify the upcoming calculations
of this section.

In Sect. 2.3, we used smooth parametrizations that were defined via a parameter
space, and therefore were cyclic. For any time parametrization |u′n(t)〉 having those
properties, we can construct a parallel-transport time parametrizaton |un(t)〉 via the
definition

|un(t)〉= eiγn(t)
∣∣u′n(t)〉 , (5.30)

where γn(t) is the adiabatic phase associated to the adiabatic time evolution of the initial
state |u′n(t = 0)〉, governed by our adiabatically varying Hamiltonian Ĥ(t):

γn(t) = i
∫ t

0
dt ′
〈
u′n(t

′)
∣∣∂t ′
∣∣u′n(t ′)〉 . (5.31)

The fact that |un(t)〉 indeed fulfils Eq. (5.29) can be checked by performing the time
derivation and the scalar product on the left hand side of the latter.

As an interpretation of Eq. (5.30), we can say that a parallel-transport time parametriza-
tion is an adiabatically time-evolving state without the dynamical phase factor. Fur-
thermore, as the Berry phase factor eiγn(T ) is, in general, different from 1, the parallel-
transport time parametrization (5.30) is, in general, not cyclic.

5.2.2 Quasi-adiabatic evolution

Here, following Thouless [33], we describe the quasi-adiabatic time evolution using
stationary states, also known as Floquet states, that are characteristic of periodically
driven quantum systems. Again, we focus on two-level systems as introduced in
Eq. (5.1), and suppress the wave number k in our notation. The central result of this
section is Eq. (5.45), which expresses how the instantaneous ground state mixes weakly
with the instantaneous excited state due to the quasi-adiabatic time dependence of the
Hamiltonian. In the next section, this result is used to evaluate the particle current and
the number of pumped particles.
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As an example, we can consider the state corresponding to the wavenumber k = 0
in the smoothly modulated Rice-Mele model with v̄ = 1, see Eq. (5.4):

d(t) =

 2+ cosΩt
0

sin(Ωt)

 . (5.32)

Stationary states of periodically driven dynamics

The stationary states are special solutions of the periodically time-dependent Schrödinger
equation, which are essentially periodic with period T ; that is, which fulfill |ψ(t +T )〉=
e−iφ |ψ(t)〉 for any t, with φ being a t-independent real number. The number of such
nonequivalent solutions equals the dimension of the Hilbert space of the quantum sys-
tem, i.e., there are two of them for the case we consider. Here we describe stationary
states in the quasi-adiabatic case, when the time evolution of the Hamiltonian is slow
compared to the energy gap between the instantaneous energy eigenvalues: Ω� 1.
This condition suggest that the deviation from the adiabatic dynamics is small, and
therefore each stationary state is in the close vicinity of either the instantaneous ground
state or the instantaneous excited state. Thereby, we will label the stationary states with
the band index n, and denote them as |ũn(t)〉.

Since, after all, we wish to describe pumping in a lattice with a filled lower band
and an empty upper band, we mostly care about the stationary state corresponding to
the lower band, |ũ1(t)〉, and therefore want to solve the time-dependent Schrödinger
equation

−i∂t |ũ1(t)〉+ Ĥ(t) |ũ1(t)〉= 0. (5.33)

Making use of the parallel-transport gauge

We characterize the time evolution of the wave function |ũ1(t)〉 by a time-dependent
linear combination of the instantaneous energy eigenstates:

|ũ1(t)〉= a1(t)e−i
∫ t

0 dt ′E1(t ′) |u1(t)〉+a2(t)e−i
∫ t

0 dt ′E2(t ′) |u2(t)〉 , (5.34)

Recall that we are using the parallel-transport time parametrization, having the prop-
erties (5.29) and (5.30). Therefore, in the adiabatic limit Ω→ 0, we already now that
a1(t) = 1 and a2(t) = 0. Here, we are mostly interested in the quasi-adiabatic case
defined via Ω� 1, and then it is expected that a1(t)∼ 1 and a2(t)∼Ω� 1.

Before making use of that consideration in the form of perturbation theory in Ω, we
convert the time-dependent Schrödinger equation (5.33) to two differential equations
for the two unknown functions a1(t) and a2(t). We insert |ũ1(t)〉 of Eq. (5.34) to the
time-dependent Schrodinger equation (5.33), yielding

−i∂t

[
a1(t)e−i

∫ t
0 dt ′E1(t ′) |u1(t)〉+a2(t)e−i

∫ t
0 dt ′E2(t ′) |u2(t)〉

]
(5.35)

+Ĥ(t)
[
a1(t)e−i

∫ t
0 dt ′E1(t ′) |u1(t)〉+a2(t)e−i

∫ t
0 dt ′E2(t ′) |u2(t)〉

]
= 0
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After evaluating the time derivatives, the left hand side consists of 8 terms. Using
the instantaneous eigenvalue relations Ĥ(t) |un(t)〉 = En(t) |un(t)〉, two pairs of terms
annihilate each other, and only 4 terms remain:

ȧ1(t) |u1(t)〉+a1(t)∂t |u1(t)〉+ ȧ2(t)e−i
∫ t

0 dt ′E(t ′) |u2(t)〉

+a2(t)e−i
∫ t

0 dt ′E(t ′)
∂t |u2(t)〉= 0, (5.36)

where E(t) = E2(t)−E1(t) = 2d(t).
Projecting Eq. (5.36) onto 〈u1(t)| and 〈u2(t)|, respectively, and making use of the

parallel-transport gauge, yields

ȧ1(t)+a2(t)e−i
∫ t

0 dt ′E(t ′) 〈u1(t)|∂t |u2(t)〉= 0, (5.37)

a1(t)〈u2(t)|∂t |u1(t)〉+ ȧ2(t)e−i
∫ t

0 dt ′E(t ′) = 0. (5.38)

The latter result can be rewritten as

ȧ2(t) =−a1(t)〈u2(t)|∂t |u1(t)〉ei
∫ t

0 dt ′E(t ′) (5.39)

Making use of the quasi-adiabatic condition

Note that the quasi-adiabatic condition has not been invoked so far; this is the next
step. As mentioned above, the quasi-adiabatic nature of the Hamiltonian suggests
that one of the two stationary states will be close to the instantaneous ground state,
suggesting a1(t) ∼ 1 and a2(t) ∼ Ω. Furthermore, we know that 〈u1(t)|∂t |u2(t)〉 ∼
Ω, since variations in |un(t)〉 become slower as the adiabatic limit is approached.
The latter relation is explicitly demonstrated by the example in Eq. (5.32): if we
use |u1(t)〉 = (−sin(θ/2),cos(θ/2))T and |u2(t)〉 = (cos(θ/2),sin(θ/2))T with θ =
arctan

( 2+cosΩt
sinΩt

)
, fulfilling the parallel-gauge criterion, we find 〈u1(t)|∂t |u2(t)〉=−Ω

1+2cosΩt
10+8cosΩt .

As we are interested in the quasi-adiabatic case Ω� 1, we drop those terms from
(5.37) and (5.39) that are at least second order in Ω. This results in

ȧ1(t) = 0, (5.40)

ȧ2(t) =−a1(t)〈u2(t)|∂t |u1(t)〉ei
∫ t

0 dt ′E(t ′). (5.41)

If we assume a1(t = 0) = 1+ o(Ω), then the first equation guarantees that a1(t) =
1+o(Ω). Then this allows for a further simplification of Eq. (5.41):

ȧ2(t) =−〈u2(t)|∂t |u1(t)〉ei
∫ t

0 dt ′E(t ′). (5.42)

Solution of the equation of motion

The remaining task is to solve Eq. (5.42) for a2(t). Instead of doing this in a construc-
tive fashion, we give the solution a2(t) and prove that it indeed fulfills (Integrating by
parts?) Eq. (5.42) up to the desired order. The solution reads

a2(t) = i
〈u2(t)|∂t |u1(t)〉

E(t)
ei
∫ t

0 dt ′E(t ′). (5.43)



5.3. THE PUMPED CURRENT IS THE BERRY CURVATURE 71

First, let us check if it solves the differential equation (5.42):

∂ta2(t) = i
(∂t 〈u2(t)|∂t |u1(t)〉)

E(t)
ei
∫ t

0 dt ′E(t ′)− i
(∂tE(t))〈u2(t)|∂t |u1(t)〉

E(t)2 ei
∫ t

0 dt ′E(t ′)

−〈u2(t)|∂t |u1(t)〉ei
∫ t

0 dt ′E(t ′). (5.44)

The first two terms on the right hand side scale as Ω2, whereas the third one scales
as Ω. Hence we conclude that in the quasi-adiabatic case, Eq. (5.43) is the solu-
tion of Eq. (5.42) we were after. The corresponding solution of the time-dependent
Schrödinger equation (5.33) is constructed using Eqs. (5.34), a1(t) = 1 and (5.41), and
reads

|ũ1(t)〉= e−i
∫ t

0 dt ′E1(t ′)
[
|u1(t)〉+ i

〈u2(t)|∂t |u1(t)〉
E(t)

|u2(t)〉
]
. (5.45)

In words, Eq. (5.45) assures that the stationary state has most of its weight in the in-
stantaneous ground state |u1(t)〉, with a small,∼Ω� 1 admixture of the instantaneous
excited state |u2(t)〉. Interestingly, even though this small admixture vanishes in the
adiabatic limit Ω→ 0, the corresponding contribution to the number of pumped parti-
cles can give a finite contribution, as the cycle period T goes to infinity in the adiabatic
limit. This will be shown explicitly in the next section.

Finally, we show that this state |ũ1(t)〉 is indeed stationary. That is proven if we
can prove that |ũ1(T )〉 is equal to |ũ1(0)〉 up to a phase factor. This arises as the
consequence of the following fact. If the Berry phase associated to the state |u1〉 is γ ,
that is, if |u1(T )〉= eiγ |u1(0)〉, then

[∂t |u1(t)〉]T = lim
ε→0

|u1(T + ε)〉− |u1(T )〉
ε

= lim
ε→0

eiγ |u1(ε)〉− eiγ |u1(0)〉
ε

= eiγ
∂t |u1(0)〉 . (5.46)

Therefore, the two terms in the square bracket of Eq. (5.45) acquire the same phase
factor eiγ at the end of the cycle, hence the obtained |ũ1(t)〉 solution is stationary.

5.3 The pumped current is the Berry curvature
The number of particles pumped through an arbitrary cross section of the one-dimensional
lattice, in the duration T of a quasi-adiabatic cycle, is evaluated combining Eqs. (5.28)
and (5.45). We define the momentum- and time-resolved current of the filled band as

j(1)m+1/2(k, t) =
1
N
〈ũ1(k, t)|∂kĤ(k, t) |ũ1(k, t)〉 , (5.47)

and perform the usual substitution 1
N ∑k∈BZ · · ·=

∫
BZ

dk
2π

. . . , yielding the following for-
mula for the number of pumped particles:

Q =
∫ T

0
dt
∫

BZ

dk
2π

j(1)m+1/2(k, t). (5.48)
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In the rest of this section, we show that the momentum- and time-resolved current is
the Berry curvature associated to the filled band, and therefore the number of pumped
particles is the Chern number, which in turn is indeed an integer.

To this end, we insert the result (5.45) to the definition (5.47). The contribution that
incorporates two lower-band wave functions |u1(k, t)〉, is finite; however, its integral
over the BZ vanishes, and therefore we disregard it as it does not contribute to particle
pumping. Hence the leading relevant contribution is the one incorporating one filled-
band |u1(k, t)〉 and one empty-band |u2(k, t)〉 wavefunction:

j(1)m+1/2(k, t) = i
〈u1| [∂kĤ] |u2〉〈u2|∂t |u1〉

E
+ c.c. (5.49)

where the k and t arguments are suppressed for brevity.
Now we use

〈u1| [∂kĤ] |u2〉= (E1−E2)〈∂ku1|u2〉=−E 〈∂ku1|u2〉, (5.50)

which has a straightforward proof using the spectral decomposition Ĥ = E1 |u1〉〈u1|+
E2 |u2〉〈u2| of the Hamiltonian and the fact that ∂k 〈u1|u2〉= 0. Therefore,

j(1)m+1/2 =−i〈∂ku1|u2〉〈u2|∂t |u1〉+ c.c.. (5.51)

Since we use the parallel-transport gauge, we can replace the projector |u2〉〈u2| with
unity in the preceding formula, hence the latter can be simplified as

j(1)m+1/2 =−i〈∂ku1|∂tu1〉+ c.c.=−i(〈∂ku1|∂tu1〉−〈∂tu1|∂ku1〉)

=−i(∂k 〈u1|∂tu1〉−∂t 〈u1|∂ku1〉) . (5.52)

This testifies that the momentum- and time-resolved current is indeed the Berry cur-
vature corresponding to the filled band, and thereby confirms the result promised in
Eq. (5.5).

Figure 5.2: Time dependence of the current and the number of pumped particles in an
adiabatic cycle.

As a straightforward application of our result, we calculate the time dependence
of the current and the number of pumped particles through an arbitrary cross section
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in the smoothly modulated Rice-Mele model, see Eq. (5.4). The results corresponding
to four different values of the parameter v̄ are shown in Fig. 5.2. The momentum-
and time-resolved current j(1)m+1/2(k, t) of the filled band can be obtained analytically
from Eq. (5.52). Then, the time-resolved current j is defined as the integrand of the
t integral in Eq. (5.48). We evaluate j via a numerical k integration, and plot the
result in Fig. (5.2)a. The number of pumped particles as a function of time is then
evaluated numerically via Q(t) =

∫ t
0 dt j(t); the results are shown in Fig. (5.2)b. These

results confirm that the number of particles pumped through the cross section during
the complete cycle is an integer, and is given by the Chern number associated to the
pumping cycle.

In this chapter, we have provided a formal description of adiabatic pumping in one-
dimensional lattices. After identifying the current operator describing particle flow
at a cross section of the lattice, we discussed the quasi-adiabatic time evolution of
the lower-band states in a two-band model, and combined these results to express the
number of pumped particles in the limit of adiabatic pumping. The central result is that
the momentum- and time-resolved current carried by the lower-band electrons is the
Berry curvature associated to their band.

Problems
The smooth pump sequence of the Rice-Mele model.
For the smoothly modulated Rice-Mele pumping cycle, see (5.4), evaluate the momentum-
and time-dependent current density, and the number of particles pumped through an
arbitrary unit cell boundary as the function of time; that is, reproduce Fig. 5.2.

Parallel-transport time parametrization.
Specify a parallel-transport time parametrization for the ground state of the two-level
Hamiltonian defined by Eqs. (5.1), (5.4), and (a) k = 0 (b) k = π .

Quasi-adiabatic dynamics with a different boundary condition.
In Sect. 5.2.2, we described a stationary state of a quasi-adiabatically driven two-level
system, and used the result to express the number of particles pumped during a com-
plete cycle. How does the derivation and the result change, if we describe the dynamics
not via the stationary state, but by specifying that the initial state is the instantaneous
ground state of the Hamiltonian at t = 0? Is the final result for the number of pumped
particles different in this case?

Adiabatic pumping in multiband models.
Generalize the central result of this chapter in the following sense. Consider adiabatic
charge pumping in a one-dimensional multi-band system (n = 1,2, . . . ,N), where the
energies of the first N− bands (n = 1,2, . . .N−) are below the Fermi energy and the en-
ergies of the remaining bands (n = N−+1, . . . ,N) are above the Fermi energy, and the
bands do not cross each other. Show that the number of particles adiabatically pumped
through an arbitrary cross section of the crystal is the sum of the Chern numbers of the
filled bands.
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Chapter 6

Two-dimensional Chern
insulators – the Qi-Wu-Zhang
model

*In this Chapter we construct two-dimensional insulators with nonvanishing Chern
numbers, by promoting the time t in a an adiabatic pump cycle on a one-dimensional
insulator, to a wavenumber ky. This construction not only gives us control over the
Chern number, but also brings with it edge states. These edge states are more than just
bound states at the edge: they form continuous bands across the bulk energy gap, and
combine into a discrete number of channels that conduct particles in one way only. As
we will show, the conduction along the edge in these channels is unimpeded even by
arbitrarily strong disorder at the edge.

The unique physical feature of topological insulators is the guaranteed existence
of low-energy states at their boundaries. We have seen an example of this for a one-
dimensional topological insulator, the SSH model: A finite, open, topologically non-
trivial SSH chain hosts 0 energy bound states at both ends. The bulk–boundary corre-
spondence was the way in which the topological invariant of the bulk – in the case of
the SSH chain, the winding number of the bulk Hamiltonian – can be used to predict
the number of edge states.

We will show that the connection between the Chern number and the number of
edge-state channels is valid in general for two-dimensional insulators. This is the state-
ment of bulk–boundary correspondence for Chern insulators. The way we will show
this inverts the argument above: taking any two-dimensional insulator, we can map
it to an adiabatic pump sequence in a one-dimensional insulator by demoting one of
the wavenumbers to time. The connection between the Chern number and the num-
ber of edge states in the higher dimensional Hamiltonian is a direct consequence of
the connection between Chern number and charge pumping in the lower dimensional
system.

Chern insulators (two-dimensional band insulators with nonvanishing Chern num-
ber) were first used to explain the Quantum Hall Effect. There an external magnetic
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field, included in lattice models via a Peierls substitution, is responsible for the nonzero
value of the Chern number. Peierls substitution, however, breaks the lattice translation
invariance. This neccessitates extra care, including the use of magnetic Brillouin zones
whose size depends on the magnetic field.

The models we construct in this Chapter describe the so-called Quantum Anoma-
lous Hall Effect. Here we have the same connection between edge states and bulk
Chern number as in the Quantum Hall Effect, however, there is no external mag-
netic field, and thus no complications with magnetic Brillouin zones. The Quantum
Anomalous Hall Effect has recently been observed in thin films of chromium-doped
(Bi,Sb)2Te3 [8].

To illustrate the concepts of Chern insulators, we will use a toy model introduced
by Qi, Wu and Zhang[24], which we call the QWZ model. This model is also important
because it forms the basic building block of the Bernevig-Hughes-Zhang model for the
quantum spin Hall effect (Chapt. 8), and thus it is also sometimes called “half BHZ”.

6.1 Dimensional extension: from an adiabatic pump to
a Chern insulator

We want to construct a two-dimensional lattice Hamiltonian Ĥ with a nonvanishing
bulk Chern number. We will do this by first constructing the bulk momentum-space
Hamiltonian Ĥ(kx,ky), from which the real-space Hamiltonian can be obtained by
Fourier transformation. For the construction we simply take an adiabatic pump se-
quence on a one-dimensional insulator, Ĥ(k, t), and reinterpret the cyclic time variable
t as a new momentum variable ky. This way of gaining an extra dimension by pro-
motion of a cyclic parameter in a continuous ensemble to a momentum is known as
dimensional extension. This, and the reverse process of dimensional reduction, are key
tools to construct the general classification of topological insulators[29].

From the Rice-Mele model to the Qi-Wu-Zhang model

To see how the construction of a Chern insulator works, we take the example of the
smooth pump sequence on the Rice-Mele model from the previous Chapter, Eqs. (4.7).
In addition to the promotion of time to an extra wavenumber, Ωt → ky, we also do an
extra unitary rotation in the internal Hilbert space, to arrive at the Qi-Wu-Zhang model,

Ĥ(k) = sinkxσ̂x + sinkyσ̂y +[u+ coskx + cosky]σ̂z. (6.1)

The mapping is summarized in Table 6.1.
The corresponding d(k) vector reads,

d(kx,ky) =

 sinkx
sinky

u+ coskx + cosky

 . (6.2)
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Adiabatic pump in the RM model QWZ model (Chern Insulator)
average intracell hopping v staggered onsite potential u

wavenumber k wavenumber kx
time t [in units of T/(2π)] wavenumber ky

σx,σy,σz σy,σz,σx

Table 6.1: Mapping of an adiabatic pump sequence of the Rice-Mele model, Ĥ(k, t) to
the QWZ model for the Anomalous Hall Effect, Ĥ(kx,ky).

6.1.1 Bulk dispersion relation
We can find the dispersion relation of the QWZ model using the algebraic properties of
the Pauli matrices, whereby Ĥ2 = E(k)I2, with I2 the unit matrix. Thus, the spectrum
of the QWZ model has two bands, the two eigenstates of Ĥ(k), with energies

E±(kx,ky) =±|d(kx,ky)| (6.3)

=±
√

sin2(kx)+ sin2(ky)+(u+ cos(kx)+ cos(ky))2. (6.4)

The spectrum of the QWZ model is depicted in Fig.6.1.
There is an energy gap in the spectrum of the QWZ model, which closes at fine-

tuned values of u = +2,0,−2. This is simple to show, since the gap closing requires
d(k) = 0 at some k. From Eq. (6.2), dx(k) = dy(k) = 0 restricts us to four inequivalent
points in the Brillouin zone:

• if u =−2: at kx = ky = 0, the so-called Γ point;

• if u = 0: at kx = 0,ky = π and kx = π,ky = 0, two inequivalent so-called X points

• if u =+2: at kx = π,ky = π , the so-called M point; note that kx =±π , ky =±π

are all equivalent

In the vicinity of a gap closing point, called Dirac point, the dispersion relation has
the shape of a Dirac cone, as seen in Fig. 6.1. For all other values of u 6= −2,0,2, the
spectrum is gapped, and thus it makes sense to investigate the topological properties of
the system.

6.1.2 Chern number of the QWZ model
Although we calculated the Chern number of the corresponding pump sequence in the
previous chapter, we show the graphical way to calculate the Chern number of the
QWZ model. We simply count how many times the torus of the image of the Brillouin
zone in the space of d contains the origin. To get some feeling about the not so trivial
geometry of the torus, it is instructive to follow a gradual sweep of the Brillouin zone
in Fig. 6.2. The parameter u shifts the whole torus along the dz direction, thus as we
tune it we also control whether the origin is contained inside it or not. For the QWZ
model three situations can occur as depicted in Fig. 6.3. It can happen that the torus
does not contain the origin, as in (a) and (d), and the Chern number is Q = 0. This is
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Figure 6.1: The bulk dispersion relation of the QWZ model, for various values of u, as
indicated in the plots. In (a)-(c), the gapless cases are shown, where the bulk gap closes
at so-called Dirac points. In (d), a generic value u =−1.8, the system is insulating.



6.1. DIMENSIONAL EXTENSION: FROM AN ADIABATIC PUMP TO A CHERN INSULATOR79

Figure 6.2: The surface d(k) for the QWZ model as k sweeps through the whole Bril-
louin zone. To illustrate how this surface is a torus the sweeping is done gradually
with u = 0. In (a) the image of the ky = −π line is depicted. In (b) the image for the
region ky = −π · · · − 0.5π , in (c) ky = −π · · · − 0.25π , in (d) ky = −π · · · − 0, in (e)
ky = −π · · ·0.25π , in (f) ky = −π · · ·0.5π , in (g) ky = −π · · ·0.75π and finally in (h)
the image of the whole Brillouin zone is depicted and the torus is closed.

the case for |u|> 2. It can also happen that the origin is in the inside of the torus: a line
from the origin to infinity will then invevitably pierce the torus. The first piercing can
be from the blue side (outside) of the surface as in (b), with Q =−1 – for −2 < u < 0
–, or from the red side (inside) as in (c), with Q = 1 – for 0 < u < 2.

To summarize, the Chern number Q of the QWZ model is

u <−2 : Q = 0; (6.5a)
−2 < u < 0 : Q =−1; (6.5b)

0 < u < 2 : Q =+1; (6.5c)
2 < u : Q = 0. (6.5d)
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Figure 6.3: The torus d(k) of the QWZ model for different values of u keeping A = 1.
For clarity only the image of half of the Brillouin zone is shown. In (a) and (d) u=∓2.2
and the torus does not contain the origin hence Q = 0. In (b) u =−1, taking an infinite
line from the origin along the positive z axis we hit the blue side of the torus once hence
Q = −1. In (c) u = 1, taking the infinite line in the negative z direction we hit the red
side of the torus thus Q = 1.

6.1.3 The real-space Hamiltonian

We obtain the full Hamiltonian of the Qi-Wu-Zhang model by inverse Fourier trans-
form of the bulk momentum-space Hamiltonian, Eq. (6.1), as

Ĥ =
Nx−1

∑
mx=1

Ny

∑
my=1

(∣∣mx +1,my
〉〈

mx,my
∣∣⊗ σ̂z + iσ̂x

2
+h.c.

)

+
Nx

∑
mx=1

Ny−1

∑
my=1

(∣∣mx,my +1
〉〈

mx,my
∣∣⊗ σ̂z + iσ̂y

2
+h.c.

)

+u
Nx

∑
mx=1

Ny

∑
my=1

∣∣mx,my
〉〈

mx,my
∣∣⊗ σ̂z. (6.6)

As sketched in Fig. 6.4), the model describes a particle with two internal states hopping
on a lattice where the nearest neighbour hopping is accompanied by an operation on the
internal degree of freedom, and this operation is different for the hoppings along the x
and y directions. In addition, there is a staggered onsite potential of strength u. Unlike
in the case of the SSH model (Chapt. 1), the real-space form of the QWZ Hamiltonian
is not intuitive.

6.2 Edge states
We constructed a Chern insulator using an adiabatic charge pump. As we saw in
Chapt. 4, charge pumps also induce energy eigenstates at the edge regions that cross
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Figure 6.4: Sketch of the QWZ model: a particle with two internal states hopping on
a square lattice. (a): The onsite potential and the hopping amplitudes are operators
acting on the internal states. (b): A strip, with periodic boundary conditions along
y, open boundaries along x (hopping amplitudes set to zero). Light blue / dark red
highlights left/right edge region. (c): Upon Fourier transformation along y, the strip
falls apart to an ensemble of one-dimensional Hamiltonians, indexed by ky.

from negative energy to positive energy bands, or vice versa. What do these energy
eigenstates correspond to for the Chern insulator?

Dispersion relation of a strip shows the edge states

To see edge states, consider a strip of a two-dimensional insulator depicted in Fig. 6.4.
Along y, we take periodic boundary conditions (close the strip to a cylinder), and go
to the limit Ny → ∞. Along x, the strip is terminated by setting the hopping ampli-
tudes to 0 (open boundary condition), and it consists of N sites. Translation invariance
holds along y, so we can partially Fourier transform – only along y. After the Fourier
transformation, the original Hamiltonian falls apart to a set of one-dimensional lattice
Hamiltonians indexed by a continuous parameter ky, the wavenumber along y. For the
QWZ model, Eq. (6.6), the ky -dependent Hamiltonian reads

Ĥ(ky) =
Nx−1

∑
mx=1

(
|mx +1〉〈mx|⊗

σ̂z + iσ̂x

2
+h.c.

)
+

Nx

∑
mx=1
|mx〉〈mx|⊗ (coskyσ̂z + sinkyσ̂y +uσ̂z). (6.7)

Note that this is the same dimensional reduction argument as before, but for a system
with edges. Energy eigenstates

∣∣Ψ(ky)
〉

of the strip fall into the categories of bulk
states and edge states, much as in the one-dimensional case. All states are delocalized
along y, but bulk states are also delocalized along x, while edge states are exponentially
confined to the left (x = 0) or the right (x = N) edge. If we find energy eigenstates with
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energy deep in the bulk gap, they have to be edge states, and can be assigned to the left
or the right edge.

An example for the dispersion relation of a strip is shown in Fig. 6.5, edge states
on the left/right edge highlighted using dark red/light blue. We used the QWZ model,
strip width N = 10, sublattice potential parameter u = −1.5, and the same practical
definition of edge states as in the Rice-Mele model,

∣∣Ψ(ky)
〉

is on the right edge ⇔
N

∑
mx=N−1

∑
α∈{A,B}

∣∣〈Ψ(ky)
∣∣ mx,α

〉∣∣2 > 0.6; (6.8)

∣∣Ψ(ky)
〉

is on the left edge ⇔
2

∑
mx=1

∑
α∈{A,B}

∣∣〈Ψ(ky)
∣∣ mx,α

〉∣∣2 > 0.6. (6.9)

Edge states conduct unidirectionally

Notice the edge state branches of the dispersion relation of the QWZ strip, Fig. 6.5,
which connect the lower and upper band across the bulk gap. They are the edge states
of the pumped Rice-Mele model, Fig. 4.6, but we now look at them with a new eye.
For the edge states in the QWZ model, dE/dky corresponds to the group velocity along
the edge. Thus, the dispersion relation tells us that particles in the QWZ model at low
energy are confined either to the to left edge and propagate upwards, or to the right
edge and propagate downwards.

The presence of one-way conducting edge state branches implies that the QWZ
model is no longer, strictly speaking, an insulator. Because of the bulk energy gap,
it cannot conduct (at low energies) between the left and right edges. However, it will
conduct along the edges, but only unidirectionally.

6.2.1 Edge states and edge perturbation
We can use dimensional reduction and translate the discussion about the robustness of
edge states from Chapt. 4 to the edge states of the QWZ model. This treats the case
where the Hamiltonian is modified in a way that only acts in the edge regions, and
is translation invariant along the edges. As an example, we introduce an extra, state-
independent next-nearest neighbor hopping, and onsite potentials at the left and right
edge of the sample. As Fig.6.6 shows, this can modify the existing edge state branches,
as well as create new edge state branches by deforming bulk branches. Including the
new local terms the Hamiltonian of Eq. (6.7) is augmented to read

Ĥ(ky) =
Nx−1

∑
mx=1

(
|mx +1〉〈mx|⊗

σ̂z + iσ̂x

2
+h.c.

)
+

Nx

∑
mx=1
|mx〉〈mx|⊗ (coskyσ̂z + sinkyσ̂y +uσ̂z)+

∑
mx∈{1,N}

|mx〉〈mx|⊗ Î2

(
µ
(mx)+h(mx)

2 cos2ky

)
. (6.10)
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Figure 6.5: Dispersion relation of a strip of QWZ model, of width N = 10, and sublat-
tice potential parameter u =−1.5. Energy eigenvalues as a function of wavenumber ky
along the edge (a) form branches of a dispersion relation. Light blue/dark red highlights
energies of edge states, whose wavefunction has over 60% weight on unit cells with
mx ≤ 2/ mx ≥ N− 1. These are parts of the Nth and N + 1th branch of the spectrum,
which split off from the bulk around −π/4 < ky < π/4, and have an avoided crossing
with an exponentially small gap near ky = 0. We show the marginal position probability
distribution of the Nth energy eigenstate, PN(mx) = ∑my |〈mx,A|ΨN〉|2+ |〈mx,B|ΨN〉|2,
for three values of ky. Depending on ky, this state can be an edge state on the right edge
(b), on the left edge (c), or a bulk state (d).

Where µ(1)/(N) is the onsite potential on the left/right edge and h(1)/(N)
2 describes a

second nearest neighbor hopping on the left/right edge. If not stated otherwise these
terms are considered to be zero.

In the top row of Fig.6.6 the spectrum of strips without edge perturbations are
depicted for Chern number Q =−1 (a) and Q = 0 (b) respectively. As we expected, a
nonzero Chern number results in edge states, one on each edge. In (c) and (d) switching
on perturbations, we see new edge states moving in to the gap. The onsite potential
acts as an overall shift in energy on the states around mx = N, the second nearest
neighbor hopping adds a considerable warping to the states localized around mx = 1
The deformations can change the number of edge states at a specific energy, but only
by adding a pair of edge states with opposite propagation directions. This leaves the
topological invariant unchanged.

6.2.2 Constructing models with higher Chern numbers by coupling
layers

A systematic way to construct models with higher Chern numbers is to layer sheets of
Chern insulators onto each other, as illustrated in Fig. 6.7. The single-particle Hilbert
space of the composite system of D layers is a direct sum of the Hilbert spaces of the
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Figure 6.6: Dispersion relation of a strip of the QWZ model, with edge states on the
left/right edge in highlighted in dark red / light blue. Top row: clean system. Bottom
row: with extra next nearest neighbor hopping along y, only the left edge, with ampli-
tude h(1)2 = 2 and an onsite potential µ(N) at the right edge. The value of the potential
in (c) is µ(N) = 0.5 and in (d) it is µ(N) = 1.5. In (e) the schematics of the considered
perturbations is shown. The additional potential terms do not affect the bulk states but
distort the edge modes and bring in new edge modes at energies that are in the bulk gap
or above/below all bulk energies.

Figure 6.7: Layering sheets of 2-dimensional insulators on top of each other is a way
to construct a two-dimensional insulator with higher Chern numbers. For uncoupled
layers, the Chern numbers can simply be summed to give the total Chern number of
the 3-layer structure, Q1 +Q2 +Q3. Switching on coupling (hopping terms) between
the sheets cannot change the Chern number as long as the bulk gap is not closed.



6.3. ROBUSTNESS OF EDGE STATES 85

layers.

HD = HL1⊕HL2⊕ . . .⊕HLD. (6.11)

The Hamiltonian, including a state-independent interlayer coupling with amplitude
C, is

ĤD =
D

∑
d=1
|d〉〈d|⊗ ĤLd +C

D−1

∑
d=1

(|d +1〉〈d|+ |d〉〈d +1|⊗ Î2NxNy , (6.12)

with Î2NxNy denoting the unit operator on the Hilbert space of a single layer. The opera-
tors ĤLd we consider below are of the form of Eq. (6.10) with different values of u, and
can have an overall real prefactor. In layer d the strength of the local edge potential is
denoted as µ(1)/(N)d . As an example, the matrix of the Hamiltonian of a system with
three coupled layers reads

H3 =

HL1 C I 0
C I HL2 C I
0 C I HL3

 . (6.13)

Numerical results for two and three coupled layers, with different Chern numbers
in the layers, are shown in Figs. 6.8. The coupling of copropagating edge modes lifts
the degeneracies, but cannot open gaps in the spectrum, except in the case of strong
coupling. This is a simple consequence of the fact that an energy eigenstate has to
be a single valued function of momentum. To open a gap, counterpropagating edge
states have to be coupled. We achieve this by coupling layers of the QWZ model with
opposite sign of the Chern number Q. For the case of two layers (Fig. 6.8, second row),
this opens a gap in the spectrum. If there are three layers, there is a majority direction
for the edge states, and so one edge state survives the coupling.

6.3 Robustness of edge states
Up to now, we have considered clean edges, i.e., two-dimensional Chern Insulators
that were terminated by an edge (at mx = 1 and mx = N), but translationally invariant
along the edge, along y. This translational invariance, and the resulting fact that the
wavenumber ky is a good quantum number, was used for the definition of the topolog-
ical invariant N+−N−, which was the net number of edge bands propagating along
the edge, equal to the bulk Chern number, Q. With disorder in the edge region that
breaks translational invariance along y, we no longer have a good quantum number ky,
and edge state bands are not straightforward to define. However, as we show in this
section, the edge states must still be there in the presence of disorder, since disorder at
the edges cannot close the bulk gap.

Smoothly removing disorder

Consider a finite, sample of a Chern insulator, with a clean bulk part but disordered
edge region, as depicted in Fig. 6.9. The bulk gap of the sample decreases due to disor-
der, but we suppose that it is not closed completely (just renormalized). Consider now
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Figure 6.8: Dispersion relations of strips of multilayered QWZ model, N = 10 unit cells
wide. In all cases the bulk Hamiltonian of the first layer ĤL1 is the QWZ Hamiltonian
with u =−1.2. To elucidate the interplay of the edge states we consider a finite poten-
tial acting on the edge µ

(1)/(N)
L1 = 0.2/−0.2. In the left column ((a) and (d)), we have

two layers, with bulk ĤL2 =−ĤL1 and edge onsite potential µ
(1)/(N)
L2 = µ

(1)/(N)
L1 . In the

middle ((b), (e)) and right ((c), (f)) columns, we have three layers. The third layer is
characterized in the bulk by ĤL3 = ĤL1 and on the edge by µ

(1)/(N)
L3 =−µ

(1)/(N)
L1 . In (b)

and (e) ĤL2 = 2ĤL1, while in (d) and (e) ĤL2 =−2ĤL1. For all four cases µ
(1)/(N)
L2 = 0.

Coupling in (d), (e) and (f) is uniform with magnitude C = 0.4.

Figure 6.9: A disordered sample of Chern insulator. The dotted lines indicate rectan-
gular parts of the sample, where disorder can be turned off adiabatically to reveal edge
states (indicated in black). Since particles cannot turn back (unidirectional, or chiral
channels), and cannot go into the bulk (in the gap), they have to travel all the way on
the perimeter of the disordered sample, coming back to the rectangular, clean part.
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a small part of the sample, containing some of the edge, indicated by the dotted rectan-
gle on the right of Fig. 6.9. Although this is much smaller than the whole sample, it is
big enough so that part of it can be considered as translation invariant “bulk”. Now in
this small part of the sample, we adiabatically (and smoothly) deform the Hamiltonian
in such a way that we set the disorder gradually to 0. This includes straightening the
part of the open boundary of the sample that falls into the dotted rectangle, to a straight
line. The deformation is adiabatic in the sense that the bulk gap is not closed in the
process. Since this small part is a clean Chern insulator, with a bulk Chern number of
Q, it can be deformed in such a way that the only edge states it contains are |Q| states
propagating counterclockwise (if Q > 0, say).

Unitarity: particles crossing the clean part have to go somewhere

Consider a particle in an edge state in the small clean part of the sample, with energy
deep inside the bulk gap (E ≈ 0). What can its future be, as its time evolution follows
the Schrödinger equation appropriate for this closed system? Since the edge state is a
chiral mode, the particle has to propagate along the edge until it leaves the clean region.
Because of unitarity, the particle cannot “stop” at the edge: that would mean that at
the “stopping point”, the divergence of the particle current in the energy eigenstate is
nonzero. In other words, the particle current that flows in the edge state has to flow
somewhere. (Put differently, if the mode describing an edge state particle “stopped
at the interface”, two particles, initially orthogonal, following each other in the mode,
would after some time arrive to the same final state. This would break unitarity.) After
leaving the clean part of the sample, the particle cannot propagate into the bulk, since its
energy is deep in the bulk gap. The disorder in the clean part was removed adiabatically,
and thus there are no edge states at the interface of the clean part and the disordered
part of the sample, along the dashed line. The particle cannot turn back, as there are no
edge states running “down” along the edge in the clean part. The only thing the particle
can do is propagate along the edge, doing a full loop around the sample until it comes
back to the clean part from below again.

The argument of the previous paragraph shows that even though the sample is disor-
dered, there has to be a low energy mode that conducts perfectly (reflectionless) along
the edge. Since at 0 energy there are Q orthogonal states a particle can be in at the edge
of the clean part of the sample, unitarity of the dynamics of the particles requires that
all along the edge of the disordered sample there are Q orthogonal modes that conduct
counterclockwise. There can be additional low energy states, representing trapped
particles, or an equal number of extra edge states for particles propagating counter-
clockwise and clockwise. However, the total number of counterclockwise propagating
edge modes at any part of the edge always has to be larger by Q than the number of
clockwise propagating edge modes. Because the Hamiltonian is short range, our con-
clusions regarding the number of edge states at any point far from the deformed region
have to hold independent of the deformation.

To be precise, in the argument above we have shown the existence of Q edge states
all along the edge of the sample, except for the small part that was adiabatically cleaned
from disorder. One way to finish the argument is by considering another part of the
sample. If we now remove the disorder adiabatically only in this part, we obtain the
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existence of the edge modes in parts of the sample including the original dotted rectan-
gle, which was not covered by the argument of the previous paragraph.

Problems
Phase diagram of the anisotropic QWZ model
The lattice Hamiltonian of the QWZ model is provided in Eq. (6.6). Consider the
anisotropic modification of the Hamiltonian when the first term of Eq. (6.6), describing
the hopping along the x axis, is multiplied by a real number A. Plot the phase diagram
of this model, that is, evaluate the Chern number as a function of two parameters u and
A.



Chapter 7

Continuum model of localized
states at a domain wall

*So far, we have discussed edge states in lattice models, in which the states live on
discrete lattice sites, and the Hamiltonian governing the physics is a matrix. Here we
argue that in certain cases, the interesting edge states arising in lattice models, dis-
cussed in earlier chapters of the book, can also be described by continuum models, in
which the states live in continuous space, and the Hamiltonian is a differential oper-
ator. The method applied to derive the continuum models is known as the envelope-
function approximation. We obtain continuum Hamiltonians for three basic lattice
models: the one-dimensional monatomic chain, the one-dimensional SSH model, and
the two-dimensional QWZ model. In the cases of the SSH and QWZ models, we use
the resulting effective Schrödinger equations to analytically characterize the localized
states appearing at boundaries between regions with different topological invariants.

So far, we have discussed edge states in lattice models, in which the states live on
discrete lattice sites, and the Hamiltonian governing the physics is a matrix. In this
chapter, we argue that in certain cases, it is also possible to describe these states via
a continuum model, in which the states live in continuous space, and the Hamiltonian
is a differential operator. One benefit of such a continuum description is that it allows
one to use the vast available toolkit of differential equations for solid-state problems in
general, including the description of topologically protected states in particular. An-
other interesting aspect of these continuum models is their strong similarity with the
Dirac equation describing relativistic fermions. A limitation of the continuum models
is that their validity is restricted to narrow windows in momentum and energy; typi-
cally they are applied in the vicinities of band edges. Here, we obtain the continuum
differential equations for three basic lattice models: the one-dimensional monatomic
chain, the one-dimensional SSH model, and the two-dimensional QWZ model. In the
cases of the SSH and QWZ models, the resulting equations will be used to analytically
characterize the localized states appearing at boundaries between regions with differ-
ent topological invariants. Even though in the entire chapter we build our discussion
on the three specific lattice models, the applicability of the technique introduced here,

89
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called envelope-function approximation, is more general and widely used to describe
electronic states in various crystalline solids.

7.1 one-dimensional monatomic chain in an electric po-
tential

We use this minimal lattice model to illustrate the basic concepts of the envelope-
function approximation (EFA) [3], the technique that allows us to find the continuum
versions of our lattice models. Of course, the one-dimensional monatomic chain does
not host topologically protected states.

7.1.1 The model
We take a long lattice with N � 1 unit cells (or sites) without an internal degree of
freedom, with periodic boundary conditions, and a negative hopping amplitude t < 0.
We consider the situation when the electrons are subject to an inhomogeneous electric
potential V (x). This setup is pictured in Fig. 7.1. The lattice Hamiltonian describing
this inhomogeneous system reads

Hi = H +V, (7.1)

where

H = t
N

∑
m=1
|m〉〈m+1|+h.c., (7.2)

V =
N

∑
m=1

Vm |m〉〈m| , (7.3)

with Vm = V (x = n). Our aim is to construct a continuum model that accurately de-
scribes the low-energy eigenstates of this lattice Hamiltonian.

Figure 7.1: one-dimensional monatomic chain in an inhomogeneous potential V (x).
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Before discussing the inhomogeneous case incorporating V (x), focus first on the
homogeneous system. The bulk momentum-space Hamiltonian is a scalar (1× 1 ma-
trix) in this model, since there is no integral degree of freedom associated to the unit
cell; it reads

H(k) = ε(k) |k〉〈k| , (7.4)

where ε(k) is the electronic dispersion relation:

ε(k) =−2|t|cosk. (7.5)

The low-energy part of the dispersion relation is located around zero momentum, and
is approximated by a parabola:

ε(k)≈−2|t|+ |t|k2 = ε0 +
k2

2m∗
, (7.6)

where we introduced the minimum energy of the band ε0 = −2|t|, and the effective
mass m∗ = 1

2|t| characterizing the low-energy part of the dispersion relation. (Using

proper physical units, the effective mass would have the form m∗ = h̄2/(2|t|a2), with a
being the lattice constant.) For simplicity, we suppress ε0 in what follows; that is, we
measure energies with respect to ε0.

7.1.2 Envelope-function approximation
Our goal is to find the low-energy eigenstates of the inhomogeneous lattice Hamilto-
nian Hi. The central proposition of the EFA, applied to our specific example of the
one-dimensional monatomic chain, says that it is possible to complete this goal by
solving the simple continuum Schrödinger equation

HEFAϕ(x) = Eϕ(x), (7.7)

where the envelope-function Hamiltonian HEFA has a very similar form to the free-
electron Hamiltonian with the electric potential V :

HEFA =
p̂2

2m∗
+V (x). (7.8)

Here p̂ = −i∂x is the usual real-space representation of the momentum operator, and
the function ϕ(x) is usually called envelope function. Note the very simple relation
between the low-energy dispersion in Eq. (7.6) and the kinetic term in the EFA Hamil-
tonian (7.8): the latter can be obtained from the former by substituting the momentum
operator p̂ in place of the momentum k.

Before formulating the EFA proposition more precisely, we introduce the concept
of a spatially slowly varying envelope function. We say that ϕ(x) is spatially slowly
varying, if its Fourier transform

ϕ̃(q) =
∫ N

0
dx

e−iqx
√

N
ϕ(x) (7.9)
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is localized to the |q| � π region, i.e., to the vicinity of the center of the BZ.
With this definition at hand, we can formulate the EFA proposition. Consider the

inhomogeneous one-dimensional monatomic chain described by Hi. Assume that ϕ(x)
is a spatially slowly varying eigenfunction of HEFA with eigenvalue E. Then, the state
|ψ〉 defined on the lattice via

|ψ〉=
N

∑
m=1

ϕ(x = m) |m〉 . (7.10)

is approximately an eigenstate of the lattice Hamiltonian Hi with eigenvalue E. The
proof follows below in Sect. 7.1.3.

Note that if the envelope function ϕ(x) fulfils the normalization condition∫ N

0
dx|ϕ(x)|2 = 1, (7.11)

then, for a long lattice N � 1, the lattice state |ψ〉 will also be normalized to a good
accuracy:

〈ψ|ψ〉 ≈ 1. (7.12)

It is important to point out two possible interpretations of the lattice state |ψ〉 in-
troduced in Eq. (7.10). (1) The state |ψ〉 can be interpreted as the zero-momentum
band-edge eigenstate |k = 0〉 = 1√

N ∑
N
m=1 |m〉 of the homogeneous system, modulated

by the envelope function ϕ(x) restricted to the lattice-site positions x =m. (2) The state
|ψ〉 can also be interpreted as a wave packet, composed of those eigenstates |k〉 of the
homogeneous lattice Hamiltonian H that have wave numbers k close to the band-edge
wave number, the latter being zero in this case. To see this, we first Fourier-decompose
ϕ(x):

ϕ(x) = ∑
k∈BZ

ϕ̃(k)
eikx
√

N
≈
′

∑
k

ϕ̃(k)
eikx
√

N
. (7.13)

In the approximate equality, we used the fact that ϕ(x) is spatially slowly varying, i.e.,
its Fourier transform ϕ̃(k) is localized to the central part of the BZ, and introduced the
notation ∑

′
k for a wave-number sum that goes only for the central part of the BZ. By

inserting Eq. (7.13) to Eq. (7.10), we find

|ψ〉=
N

∑
m=1

(
′

∑
k

ϕ̃(k)
eikm
√

N

)
|m〉=

′

∑
k

ϕ̃(k) |k〉 . (7.14)

That is, |ψ〉 is indeed a packet of plane waves with small wave numbers.

7.1.3 Envelope-function approximation: the proof
To prove the EFA proposition, we calculate Hi |ψ〉 and utilize the spatially-slowly-
varying condition on ϕ(x). Start with the contribution of the bulk Hamiltonian H:

H |ψ〉=

[
∑

k∈BZ
ε(k) |k〉〈k|

][
N

∑
m=1

ϕ(m) |m〉
]
. (7.15)
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Express the envelope function via its Fourier transform:

H |ψ〉=

[
∑

k∈BZ
ε(k) |k〉〈k|

][
N

∑
m=1

(
∑

q∈BZ
ϕ̃(q)

eiqm
√

N

)
|m〉
]
. (7.16)

Now use the fact that ϕ(x) is spatially slowly varying; that implies that the q sum can
be restricted to the central part of the BZ:

H |ψ〉=

[
∑

k∈BZ
ε(k) |k〉〈k|

][
N

∑
m=1

(
′

∑
q

ϕ̃(q)
eiqm
√

N

)
|m〉
]
. (7.17)

Performing the sum for m, we find

H |ψ〉=

[
∑

k∈BZ
ε(k) |k〉〈k|

][
′

∑
q

ϕ̃(q) |q〉
]
. (7.18)

Performing the scalar product yields

H |ψ〉=
′

∑
q

ε(q)ϕ̃(q) |q〉 . (7.19)

Using the fact that the q sum goes for the central part of the BZ, where the dispersion
relation ε(q) is well approximated by a parabola, we find

H |ψ〉 ≈
′

∑
q

q2

2m∗
ϕ̃(q) |q〉 . (7.20)

Utilizing the definition of the plane wave |q〉, we obtain

H |ψ〉 ≈
′

∑
q

q2

2m∗
ϕ̃(q)

N

∑
m=1

eiqm
√

N
|m〉 , (7.21)

which can be rewritten as

H |ψ〉 ≈
N

∑
m=1

[
′

∑
q

q2

2m∗
ϕ̃(q)

eiqx
√

N

]
x=m

|m〉 (7.22)

=
N

∑
m=1

[
− 1

2m∗
∂

2
x

′

∑
q

ϕ̃(q)
eiqx
√

N

]
x=m

|m〉 (7.23)

=
N

∑
m=1

[
p̂2

2m∗
ϕ(x)

]
x=m
|m〉 . (7.24)

Continue with the contribution of the potential V . Using Eqs. (7.3) and (7.10), we
find

V |ψ〉 =

[
N

∑
m=1

Vm |m〉〈m|
][

N

∑
m′=1

ϕ(m′)
∣∣m′〉]= N

∑
m=1

Vmϕ(m) |m〉

=
N

∑
m=1

[V (x)ϕ(x)]x=m |m〉 . (7.25)
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Summing up the contribution (7.24) of H and the contribution (7.25) of V , we find

(H +V ) |ψ〉 ≈
N

∑
m=1

[HEFAϕ(x)]x=m |m〉=
N

∑
m=1

[Eϕ(x)]x=m |m〉 (7.26)

= E
N

∑
m=1

ϕ(m) |m〉= E |ψ〉 , (7.27)

which concludes the proof.

7.2 The SSH model and the one-dimensional Dirac equa-
tion

To illustrate how the EFA captures topologically protected bound states in one-dimensional,
we use the SSH model described in detail in Chapt. 1. The model is visualized in Fig.
1.1. The bulk Hamiltonian is characterized by two parameters, the intra-cell and inter-
cell hopping amplitudes v,w > 0, respectively. The bulk lattice Hamiltonian of the SSH
model is given in Eq. (1.1), whereas the bulk momentum-space Hamiltonian is given
in Eq. (1.14). We have seen that the (v,w) parameter space is separated to two adia-
batically connected partitions by the v = w line. In Sect. 1.5.1, we have also seen that
localized zero-energy states appear at a domain wall between two half-infinite homo-
geneous regions, if the two regions have different bulk topological invariants; that is, if
the sign of v−w is different at the two sides of the domain wall.

This is the phenomenon that we address in this section: we show that an analytical
description of such localized states can be given using the EFA. First, we discuss the
electronic dispersion relation of the metallic (v=w) and nearly metallic (|v−w|� |v+
w|) homogeneous SSH model. Second, we obtain the Dirac-type differential equation
providing a continuum description for the inhomogeneous SSH model (see Fig. 7.2) for
the energy range in the vicinity of the bulk band gap. Finally, we solve that differential
equation to find the localized zero-energy states at a domain wall. Remarkably, the
analytical treatment remains useful even if the spatial structure of the domain wall is
rather irregular.

7.2.1 The metallic case
First, consider the metallic homogeneous SSH model, where v = w. The dispersion
relation is shown as the blue solid line in Fig. 1.2c. The filled and empty bands touch
at the end of the BZ, at k = k0 ≡ π . Figure 1.2c shows that in the vicinity of that touch-
ing point, commonly referred to as a Dirac point, the dispersion relations are linear
functions of the relative wave vector q = k− k0. The slope of these linear functions,
corresponding to the group velocity of the electrons, can be determined, e.g. by Taylor-
expanding the bulk momentum-space Hamiltonian Ĥ(k) = (v+wcosk)σ̂x +wsinkσ̂y,
see Eq. (1.10), to first order in q:

Ĥ(k0 +q)≈−wqσ̂y, (v = w). (7.28)
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Figure 7.2: Inhomogeneous intracell hopping and domain walls in the SSH model. The
dashed ellipse denotes the unit cell. The dashed line connecting the edges of the chain
denotes the periodic boundary condition.

which indeed has a linear dispersion relation,

E±(q) =±wq. (7.29)

The eigenstates of the linearized Hamiltonian (7.28) are

ψ±(q) =
1√
2

(
1
∓i

)
. (7.30)

Note that the dispersion relation of the Dirac equation of fermions with zero mass
is

E±(k) =±h̄kc, (7.31)

where h̄ is the reduced Planck’s constant and c is the speed of light. Comparing Eqs.
(7.29) and (7.31), we conclude that the dispersion of the metallic SSH model is anal-
ogous to that of massless Dirac fermions, and the hopping amplitude of the metallic
SSH model plays the role of h̄c. Because of the similarity of the dispersions (7.29) and
(7.31), the linearized Hamiltonian (7.28) is often called a massless Dirac Hamiltonian.

At this point, the linearization of the bulk momentum-space Hamiltonian of the
SSH model does not seem to be a particularly fruitful simplification: to obtain the
dispersion relation and the eigenstates, a 2×2 matrix has to be diagonalized, no matter
if the linearization has been done or not. However, linearizing the Hamiltonian is the
first step towards the EFA, as discussed below.

7.2.2 The nearly metallic case

Now consider a homogeneous, insulating SSH model that is nearly metallic; that is,
the scale of the energy gap |v−w| opened at k0 is significantly smaller than the scale of
the band width v+w. An example is are shown in 1.2b, where the dispersion relation
is plotted for the parameter values v = 1 and w = 0.6.
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We wish to describe the states close to the band gap located around zero energy.
Hence, again, we can use the approximate bulk momentum-space Hamiltonian ob-
tained via linearization in the relative momentum q:

Ĥ(k0 +q)≈Mσ̂x−wqσ̂y, (7.32)

where we defined M = v−w. The dispersion relation reads

E±(q) =±
√

M2 +w2q2. (7.33)

The (unnormalized) eigenstates of the linearized Hamiltonian (7.32) have the form

ψ±(q) =
(

M+ iwq
E±(q)

)
. (7.34)

Note that the dispersion relation of the Dirac equation for fermions with finite mass
µ 6= 0 reads

E±(k) =±
√

µ2c4 + h̄2k2c2. (7.35)

Therefore, the parameter M = v−w of the SSH model plays the role of the mass-related
term µc2 of the relativistic dispersion relation (7.35), and the linearized Hamiltonian
(7.32) is often called a massive Dirac Hamiltonian.

7.2.3 Continuum description of the nearly metallic case
We are mostly interested in a continuum description of the zero-energy localized states
formed at a domain wall between two topologically distinct regions. For simplicity and
concreteness, consider the case when the domain wall is created so that the intra-cell
hopping amplitude v varies in space while the inter-cell one is constant, as shown in
Fig. 7.2.

In what follows, we will focus on one of the two domain walls shown in Fig. 7.2.
The inhomogeneous Hamiltonian has the form

Hi =
N

∑
m=1

vm (|m,B〉〈m,A|+h.c.)+w
N

∑
m=1

(|m,B〉〈m+1,A|+h.c.) , (7.36)

where vm = v(x=m) and v(x)≥ 0 is a continuously varying function of position, which
takes the constant value v− (v+) far on the left (right) from the domain wall.

We also assume that the local Hamiltonian is a nearly metallic SSH Hamiltonian
everywhere in space. That is, |v(x)−w| � v(x)+w. This ensures that the local band
gaps |v±−w| on the two sides of the domain wall are much smaller than the local band
widths v±+w.

Based on our experience with the EFA in the inhomogeneous one-dimensional
monatomic chain (see Sect. 7.1), now we construct the EFA proposition corresponding
to this inhomogeneous, nearly metallic SSH model. Recall that in the former case,
we obtained the EFA Hamiltonian by (i) Taylor-expanding the bulk momentum-space
Hamiltonian around the wave vector corresponding to the band extremum (that was
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k0 = 0 in Sect. 7.1), (ii) replacing the relative wave vector q with the momentum op-
erator p̂ =−i∂x, and (iii) incorporating the inhomogeneity of the respective parameter,
which was the on-site potential V (x) in that case. The same procedure, applied now for
the SSH model with a first-order Taylor expansion, yields the following EFA Hamilto-
nian:

HEFA = M(x)σ̂x−wp̂σ̂y. (7.37)

The EFA proposition is then formulated as follows. Assume that ϕ(x) = (ϕA(x),ϕB(x))
is a spatially slowly varying eigenfunction of HEFA in Eq. (7.37), with eigenvalue E.
Then, the state |ψ〉 defined on the lattice via

|ψ〉=
N

∑
m=1

∑
α=A,B

ϕα(m)eik0m |m,α〉 (7.38)

is approximately an eigenstate of the lattice Hamiltonian Hi with energy E.
Note that, in analogy with Eq. (7.14), the lattice state |ψ〉 can be reformulated as

a wave packet formed by those eigenfunctions of the homogeneous (v(x) = w) system
that are in the vicinity of the band-edge momentum k0:

|ψ〉 ≈
′

∑
q

∑
α=A,B

ϕ̃α(q) |k0 +q〉⊗ |α〉 . (7.39)

7.2.4 Localized states at a domain wall
Having the envelope-function Schrödinger equation

[M(x)σ̂x−wp̂σ̂y]ϕ(x) = Eϕ(x) (7.40)

at hand, we can study the domain wall between the two topologically distinct regions.
First, we consider a step-type domain wall, defined via

M(x) =
{

M0 if x > 0,
−M0 if x < 0 , (7.41)

and M0 > 0, as shown in Fig. 7.3a.
We wish to use the EFA Schrödinger equation (7.40) to establish the zero-energy

states localized to the domain wall, which were revealed earlier in the lattice SSH
model. That is, we look for evanescent solutions of Eq. (7.40) on both sides of the
domain wall, and try to match them at the interface x = 0. For the x > 0 region, our
evanescent-wave Ansatz reads

ϕx>0(x) =

(
a

b

)
e−κx (7.42)

with κ > 0. Substituting this to Eq. (7.40) yields a quadratic characteristic equation for
the energy E, having two solutions

E± =±
√

M2
0 −w2κ2. (7.43)



98CHAPTER 7. CONTINUUM MODEL OF LOCALIZED STATES AT A DOMAIN WALL

Figure 7.3: (a) Step-like and (b) irregular spatial dependence of the mass parameter
M(x) of the one-dimensional Dirac equation.

The corresponding unnormalized spinors read(
a±

b±

)
=

( M0−wκ

E±

1

)
. (7.44)

An analogous Ansatz for the x < 0 region is

ϕx<0(x) =

(
c

d

)
eκx (7.45)

with κ > 0, yielding the same energies as in Eq. (7.43), and the spinors(
c±

d±

)
=

( −M0+wκ

E±

1

)
. (7.46)

Now consider an energy eigenstate with a given energy E. For clarity, set M0 >
E ≥ 0. The (unnormalized) envelope function of the energy eigenstate has the form

ϕ(x) = ϕx>0(x)Θ(x)+Cϕx<0(x)Θ(−x), (7.47)

where ϕx<0 and ϕx>0 should be evaluated by replacing E± 7→ E and κ 7→
√

M2
0−E2

w , and
C is a yet unknown parameter to be determined from the boundary conditions at the
domain wall. The envelope function (7.47) is an eigenstate of the EFA Hamiltonian
with energy E if the boundary condition that the wave function is continuous at x = 0,
that is,

ϕx<0(0) =Cϕx>0(0), (7.48)

is fulfilled. Note that in our case, the Dirac equation is a first-order differential equation
and therefore there is no boundary condition imposed on the derivative of the wave
function. From the second component of Eq. (7.48), we have C = 1. From the first
component, we have M0−wκ =−M0+wκ , implying M0 =wκ and thereby E = 0. The
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same result is obtained if the range −M0 < E ≤ 0 of negative energies is considered.
Hence we conclude that the zero-energy state at the domain wall does appear in the
continuum model of the inhomogeneous SSH chain, as expected.

Let us also determine the coefficients a and c describing this localized state:

a = lim
E→0

M0−
√

M2
0 −E2

E
= 0, (7.49)

and similarly, c = 0. These imply that the localized state is completely sublattice-
polarized, i.e., it lives on the B sublattice, and therefore it is its own chiral partner.
Considering the a similar mass profile with negative M0, we would have found that the
localized state lives on the A sublattice. These properties are in line with our expecta-
tions drawn from the lattice SSH model.

A further characteristic property of the localized state is its localization length;
from our continuum model, we have an analytical result for that:

1
κ
=

w
M0

. (7.50)

(In physical units, that is 1
κ
= w

M0
a.) Recall that we are constrained to the nearly metallic

regime w�M0 = v+−w; together with Eq. (7.50), this implies that the localization
length is much larger than one (that is, the lattice constant). This is reassuring: it means
that the envelope function ϕ(x) is spatially slowly varying, hence is within the range
of validity of the EFA.

The result (7.50) can be compared to the corresponding result for the SSH lattice
model. Eq. (1.50) provides the localization length ξ of an edge state in a disordered
SSH model, which corresponds to the localization length 1

κ
obtained above. Taking the

disorder-free special case of Eq. (1.50), we have

ξ =
1

log w
v
=

1
log w

w+(v−w)
≈ w

w− v
. (7.51)

As we are making a comparison to the nearly metallic v ≈ w case considered in this
section, we could approximate ξ in Eq. (7.51) using a leading-order Taylor expansion
in the small quantity (w−v)/w. The approximate result (7.51) is in line with Eq. (7.50)
obtained from the continuum model.

A further interesting fact is that the existence of the localized state is not constrained
to the case of a sharp, step-like domain wall described above. The simple spinor struc-
ture found above also generalizes for less regular domain walls. To see this, consider
an almost arbitrary one-dimensional spatial dependence M(x) of the mass, illustrated
in Fig. 7.3b, with the only condition that M changes sign between the half-planes x < 0
and x > 0, i.e., M(x→−∞)< 0 and M(x→ ∞)> 0. We claim that there exists a zero-
energy solution of the corresponding one-dimensional Dirac equation that is localized
to the domain wall and has the envelope function

ϕ(x) =
(

0
1

)
f (x). (7.52)
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To prove this claim, insert this wave function ϕ(x) to the one-dimensional Dirac equa-
tion and substitute E = 0 therein. This procedure results in the single differential equa-
tion ∂x f (x) = −M(x)

w f (x), implying that Eq. (7.52) is indeed a zero-energy eigenstate
of the envelope-function Hamiltonian if the function f has the form

f (x) = const× e−
1
w
∫ x

0 dx′M(x′). (7.53)

Furthermore, the asymptotic conditions of the mass M(x) guarantee that this envelope
function decays as x→±∞, and therefore is localized at the domain wall.

7.3 The QWZ model and the two-dimensional Dirac
equation

We have introduced the QWZ model as an example for a two-dimensional Chern insu-
lator in Chapt. 6. The lattice Hamiltonian of the model is given in Eq. (6.6), whereas
the bulk momentum-space Hamiltonian is given in Eq. (6.1). The dispersion relation
is calculated in Eq. (6.4), and examples of it are shown in Fig. 6.1.

Recall that the model has a single parameter u, and the Chern number of the model
is determined by the value of u via Eq. (6.5). Similarly to the case of the SSH model in
one dimension, one can consider a domain wall between locally homogeneous regions
of the QWZ model that have different Chern numbers. Just as the edge of a strip, such a
domain wall can support topologically protected states that propagate along the domain
wall but are localized at the domain wall in the transverse direction. The number and
propagation direction of those states is determined by the magnitude and sign of the
difference of the Chern numbers in the two domains, respectively. In this section, we
use the EFA to provide a continuum description of such states.

7.3.1 The metallic case

First, consider the metallic cases of the QWZ model; that is, when the band structure
has no energy gap. In particular, we will focus on the u =−2 case. The corresponding
band structure is shown in Fig. 6.1(a). The two bands touch at k = (0,0), and form a
Dirac cone at that Dirac point.

To describe excitations in the vicinity of the Dirac point of such a metal, it is suffi-
cient to use a linearized approximation of the QWZ Hamiltonian Ĥ(k) that is obtained
via a Taylor expansion of Ĥ(k) up to first order in the k-space location q = k− k0
measured from the Dirac point k0. In the case u = −2, the Dirac point is k0 = (0,0),
and the linearized Hamiltonian reads

Ĥ(k0 +q)≈ qxσ̂x +qyσ̂y. (7.54)

The dispersion relation is E±(q) =±q; again, this is analogous to that of the massless
Dirac equation Eq. (7.31).
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7.3.2 The nearly metallic case

Now consider a QWZ insulator that is nearly metallic: u≈−2. The dispersion relation
for u =−1.8 is shown in Fig. 6.1(d). In the vicinity of the metallic state, as seen in the
figure, a small gap opens in the band structure at the Dirac point k0 = (0,0).

The states and the band structure around k0 can again be described by a linearized
approximation of the QWZ Hamiltonian Ĥ(k0 +q) in q:

Ĥ(k0 +q)≈Mσ̂z +qxσ̂x +qyσ̂y, (7.55)

where we defined the parameter M = u+2. The dispersion relation reads

E±(q) =±
√

M2 +q2. (7.56)

A comparison with the relativistic dispersion relation (7.35) reveals that the parameter
M of the QWZ model plays the role of µc2; hence M can be called the mass parameter.

7.3.3 Continuum description of the nearly metallic case

We have discussed that the QWZ lattice with an inhomogeneous u parameter might
support topologically protected states at boundaries separating locally homogeneous
regions with different Chern numbers. Similarly to the one-dimensional SSH model
treated above, these localized states can be described analytically, using the envelope
function approximation (EFA), also in the two-dimensional QWZ model. In the rest of
this Chapter, we focus on the nearly metallic case where the inhomogeneous u(x,y) is in
the vicinity of −2 (i.e., |M(x,y)|= |u(x,y)+2| � 1), in which case the the low-energy
excitations are expected to localize in Fourier space around the band extremum point
k0 = (0,0) (see Figs. 6.1a and d). Here we obtain the EFA Schrödinger-type equation,
which resembles the two-dimensional Dirac equation, and in the next subsection we
provide its localized solutions for simple domain-wall arrangements.

The considered lattice is inhomogeneous due to the spatial dependence of the pa-
rameter u(x,y). In the tight-binding lattice model, we denote the value of u in unit cell
m = (mx,my) as um = u(x = mx,y = my), and correspondingly, we introduce the local
mass parameter via M(x,y) = u(x,y)+2 and Mm = M(x = mx,y = my).

The EFA Hamiltonian can be constructed the same way as in sections 7.1 and
7.2.3. The bulk momentum-space Hamiltonian H(k0 +q) is Taylor-expanded around
the band-edge wave vector k0 = (0,0), the wave-number components qx and qy are
replaced by the differential operators p̂x and p̂y, respectively, and the inhomogeneous
mass parameter M(x,y) is incorporated. This yields the following result in our present
case:

ĤEFA = M(x,y)σ̂z + p̂xσ̂x + p̂yσ̂y. (7.57)

Then, the familiar EFA proposition is as follows. Assume that the two-component
envelope function ϕ(x,y) is a spatially slowly varying solution of the EFA Schrödinger
equation

ĤEFAϕ(x,y) = Eϕ(x,y). (7.58)
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Then, the lattice state |ψ〉 associated to the envelope function ϕ(x,y) is defined as

|ψ〉= ∑
m,α

ϕα(m) |m,α〉 . (7.59)

It is claimed that the lattice state |ψ〉 is approximately an eigenstate of the inhomoge-
neous lattice Hamiltonian with the eigenvalue E.

7.3.4 Chiral states at a domain wall
We can now use the EFA Hamiltonian (7.57) to describe the chiral states at a domain
wall between two topologically distinct regions of the QWZ model. The Dirac-type
EFA Schrödinger equation reads:

[M(x,y)σ̂z + p̂xσ̂x + p̂σ̂y]ϕ(x,y) = Eϕ(x,y). (7.60)

Consider the homogeneous case first: M(x,y) = M0, where M0 might be positive or
negative. What is the dispersion relation for propagating waves? What are the energy
eigenstates? The answers follow from the plane-wave Ansatz

ϕ(x,y) =
(

a
b

)
eiqxxeiqyy (7.61)

with qx,qy ∈ R and a,b ∈ C. With this trial wave function, Eq. (7.60) yields two
solutions:

E± =±
√

M2
0 +q2

x +q2
y , (7.62)

and
a±
b±

=
qx− iqy

E±−M0
. (7.63)

Describe now the states at a domain wall between two locally homogeneous regions
where the sign of the mass parameter is different. Remember that the sign of the mass
parameter in the EFA Hamiltonian is related to the Chern number of the corresponding
homogeneous half-BHZ lattice: in our case, a positive (negative) mass implies a Chern
number −1 (0).

To be specific, we will consider the case when the two domains are defined as the
y < 0 and the y > 0 half-planes, i.e., the mass profile in Eq. (7.60) are

M(x,y) =
{

M0 if y > 0,
−M0 if y < 0 . (7.64)

Let M0 be positive; the corresponding mass profile is the same as shown in Fig. 7.3a,
with x replaced by y.

Now we look for solutions of Eq. (7.60) that reside in the energy range−M0 < E <
M0, i.e., in the bulk gap of the two domains, and which propagate along, but decay
perpendicular to, the domain wall at y = 0. Our wave-function Ansatz for the upper
half plane y > 0 is

ϕu(x,y) =
(

au
bu

)
eiqxxeiq(u)y y (7.65)
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with qx ∈ R, q(u)y ∈ iR+ and a,b ∈ C. For the lower half plane, ϕl(x,y) is defined as
ϕu(x,y) but with u↔ l interchanged and q(l)y ∈ iR−. The wave function ϕu(x,y) does
solve the two-dimensional Dirac equation defined by Eqs. (7.60) and (7.64) in the
upper half plane y > 0 provided

q(u)y = iκ ≡ i
√

M2
0 +q2

x−E2 (7.66)

and
au

bu
=

qx +κ

E−M0
(7.67)

Similar conditions apply for the ansatz ϕl(x,y) for the lower half plane, with the sub-
stitutions u 7→ l, κ 7→ −κ and M0 7→ −M0. The complete (unnormalized) envelope
function has the form

ϕ(x,y) = ϕu(x,y)Θ(y)+ cϕl(x,y)Θ(−y), (7.68)

where c is a yet unknown complex parameter to be determined from the boundary
conditions at the domain wall.

The wave function (7.68) is an eigenstate of the EFA Hamiltonian with energy E if
the boundary condition that the wave function is continuous on the line y = 0, that is,

ϕu(x,0) = ϕl(x,0), (7.69)

is fulfilled for every x.
The boundary condition (7.69) determines the value of the parameter c as well as

the dispersion relation E(qx) of the edge states. First, (7.69) implies

qx−κ = c(qx +κ) ⇒ c =
qx−κ

qx +κ
, (7.70)

E +M0 = c(E−M0) ⇒ −qxM0 = κE. (7.71)

Note that κ depends on E according to Eq. (7.66). It is straigthforward to find the dis-
persion relation of the edge states by solving−qxM0 = κ(E)E for E with the condition
−M0 < E < M0:

E =−qx. (7.72)

This simple dispersion relation is shown in Fig. 7.4a. Together with Eq. (7.66), this
dispersion implies that the localization length of edge states is governed by M0 only,
i.e., is independent of qx. The squared wave function of an edge state is shown in
Fig. 7.4b.

A remarkable consequence of this simple dispersion relation is that the spinor com-
ponents of the envelope function also have a simple form:(

au
bu

)
=

(
al
bl

)
=

(
1
−1

)
. (7.73)

Edge states at similar mass domain walls at u(y) ≈ 0 and u(y) ≈ 2 can be derived
analogously. Note that at u(y) ≈ 0, the low-energy states can reside in two different
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Figure 7.4: Chiral state obtained from the two-dimensional Dirac equation. (a) Disper-
sion relation and (b) squared wave function of a chiral state confined to, and propagat-
ing along, a mass domain wall.

Dirac valleys, around k0 = (0,π) or k0 = (π,0), and there is one edge state in each
valley. The number of edge states obtained in the continuum model, as well as their di-
rections of propagation, are in correspondence with those obtained in the lattice model;
as we have seen for the latter case, the number and direction are given by the magnitude
and the sign of Chern-number difference across the domain wall, respectively.

An interesting fact is that the existence of the edge state is not constrained to case
of a sharp, step-like domain wall described above. Moreover, the simple dispersion
relation and spinor structure found above generalize for more irregular domain walls.
This generalization is proven in a similar fashion as in the case of the SSH model, see
Sect. 7.2.4. To see this, consider an almost arbitrary one-dimensional spatial depen-
dence of the mass, similar to the one in Fig. 7.3b: M(x,y) = M(y) with the only condi-
tion that M changes sign between the half-planes y < 0 and y > 0, i.e., M(y→−∞)< 0
and M(y→ ∞) > 0. We claim that there exists a solution of the corresponding two-
dimensional Dirac equation that propagates along the domain wall, has the dispersion
relation E = −qx, is confined in the direction perpendicular to the domain wall, and
has the wave function

ϕ(x,y) =
(

1
−1

)
eiqxx f (y). (7.74)

To prove this proposition, insert this wave function ϕ(x,y) to the two-dimensional
Dirac equation and substitute E with −qx therein. This procedure results in two equiv-
alent equations that are fulfilled if ∂y f (y) = −M(y) f (y), implying that Eq. (7.74) is
indeed a normalizable solution with E =−qx provided that the function f has the form

f (y) = e−
∫ y

0 dy′M(y′). (7.75)

To summarize: In the preceding chapters, we introduced the topological character-
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ization of lattice models and the corresponding edge states and states bound to domain
walls between regions of different topological character. In this chapter, we demon-
strated that a low-energy continuum description (the EFA Schrödinger equation) can
be derived from a lattice model, and can be used to describe those electronic states.
Besides being a convenient analytical tool to describe inhomogeneous lattices, the
envelope-function approximation also demonstrates that the emergence of topologi-
cally protected states is not restricted to lattice models.

Problems
SSH model with spatially dependent intracell hopping.
In Sect. 7.2.3, we provide the EFA proposition for the SSH model with spatially de-
pendent intracell hopping. Prove this proposition, following the procedure detailed in
Sect. 7.1.3 for the one-dimensional monatomic chain.

SSH model with spatially dependent intercell hopping.
Derive the EFA Hamiltonian for an inhomogeneous SSH model, where w varies in
space and v is constant. Assume a nearly metallic scenario, w(x)≈ v.

QWZ model.
Prove the EFA proposition for the QWZ model. The proposition is outlined in Sect. 7.3.3.
The proof is analogous to that used for the SSH model.

QWZ model at u≈ 2.
The bulk momentum-space Hamiltonian Ĥ(k) of the QWZ model is given in Eq. (6.1).
Starting from this Ĥ(k), derive the EFA Hamiltonian describing low-energy excitations
in the case of an inhomogeneous u parameter for which u≈ 2.
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Chapter 8

Time-reversal symmetric
two-dimensional topological
insulators – the
Bernevig–Hughes–Zhang model

*Time-reversal symmetry ensures that for every edge state in the spectrum, there is
another edge state at the same edge, at the same energy, hosting particles that prop-
agate in the opposite direction. Time-reversal symmetric insulators must thus have a
Chern number of zero. In this chapter we show that if the time reversal squares to
-1 (fermionic time reversal), then these systems can host edge states that are protected
against localization by time-reversal invariant disorder. There is at most one pair of pro-
tected edge states, and thus time-reversal symmetric two-dimensional insulators come
in two flavors: topological or trivial.

In the previous chapters, we have seen how two-dimensional insulators can host
one-way propagating (a.k.a. chiral) edge states, which ensures reflectionless transport
along the edge. The existence of chiral edge states precludes time-reversal symmetry:
time-reversed edge states would describe particles propagating backwards along the
edge. In Chern Insulators (two-dimensional insulators with nonvanishing Chern num-
ber), the absence of these counterpropagating states from the spectrum is what ensures
the reflectionless propagation of particles along the edges.

What about time-reversal symmetric (also known as time-reversal invariant) two
dimensional insulators? According to the above, they cannot be Chern insulators. Inter-
estingly though, the same time-reversal symmetry that ensures that for every edge state
mode there is a counterpropagating time reversed partner, can also ensure that no scat-
tering between these two modes occurs. This means that it is possible for time-reversal
invariant two-dimensional insulators to host edge states with reflectionless propaga-
tion, in both directions, at both edges. The details of why and how this happens are
discussed in this and the following chapters.

107
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We will find that two-dimensional time-reversal invariant topological insulators fall
into two classes: the trivial class, with an even number of pairs of edge states at a single
edge, and the topological class, with an odd number of pairs of edge states at a single
edge. We then subsequently show that disorder that breaks translational invariance
along the edge can destroy edge state conduction in the trivial class, but not in the
topological class.

The bulk–boundary correspondence for Chern Insulators stated that the net number
of edge states on the edge, N+−N−, is the same as the Chern number of the bulk, Q.
We showed this by mapping the 2-dimensional system to a periodically, adiabatically
pumped one-dimensional chain. After the mapping, the unit of charge pumped through
the chain during a period could be identified with the net number of chiral edge states.

Unfortunately, identifying and calculating the bulk topological invariant of a time-
reversal invariant two-dimensional insulator is much more cumbersome than for a
Chern insulator. We therefore come back to this problem in the next Chapter.

8.1 Time-Reversal Symmetry
Before we discuss time-reversal symmetric topological insulators, we first need to un-
derstand what we mean by time reversal symmetry, and how it leads to Kramers’ de-
generacy.

8.1.1 Time Reversal in continuous variable quantum mechanics
(without spin)

Take a single particle with no internal degree of freedom, described by a wavefunction
Ψ(r). Its dynamics is presribed by a time independent Hamiltonian Ĥ =(p̂−eA(r̂))2+
V (r̂), where the functions A and V are the vector and scalar potentials, respectively,
and e is the charge of the particle. The corresponding Schrödinger equation for the
wavefuncion Ψ(r, t) reads

i∂tΨ(r, t) =
{
(−i∂r− eA(r))2 +V (r)

}
Ψ(r, t). (8.1)

Any solution Ψ of the above equation can be complex conjugated, and gives a solution
of the complex conjugate of the Schrödinger equation,

−i∂tΨ(r, t)∗ =
{
(−i∂r + eA(r))2 +V (r)

}
Ψ(r, t)∗. (8.2)

The operator of complex conjugation in real space basis

We use K to denote the operator that complex conjugates everything to its right in real
space basis,

K f (r) = f (r)∗K; K2 = 1, (8.3)

for any complex valued function f (r) of position. The Schrödinger equation above can
be rewritten using K as

Ki∂tΨ = Ki∂tKKΨ =−i∂tΨ
∗ = KĤKKΨ = Ĥ∗Ψ∗. (8.4)
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Complex conjugation in real space basis conforms to intuitive expectations of time
reversal: it is local in space, takes x̂→ x̂, and flips the momenta, i∂x→−i∂x.

Time reversal

The above relation shows that for any closed quantum mechanical system, there is a
simple way to implement time reversal. This requires to change both the wavefunction
Ψ to Ψ∗ and the Hamiltonian Ĥ to Ĥ∗. The change of the Hamiltonian involves A→
−A, i.e., flipping the sign of the vector potential.

Time reversal symmetry

In the special case where the Hamiltonian in real space basis is real, Ĥ∗ = Ĥ, we can
implement time reversal by only acting on the wavefunction. In that case, we say that
the system has time reversal symmetry. For the scalar Schrödinger equation above, this
happens if there is no vector potential, A = 0. To see this more explicitly, consider
time evolution for a time t, then apply the antiunitary operator K, then continue time
evolution for time t, then apply K once more:

Û = Ke−iĤtKe−iĤt = e−KiĤtKe−iĤt = eiĤ∗te−iĤt (8.5)

If Ĥ∗ = Ĥ, then Û = 1, which means that K acts like time reversal.

8.1.2 Lattice models with an internal degree of freedom

In these notes we deal with models for solids which are lattice Hamiltonians: the posi-
tion (the external degree of freedom) is discrete, and there can be an internal degree of
freedom (sublattice, orbital, spin, or other).

Definition of the operator K

For the operator of complex conjugation we need to fix not only the external posi-
tion basis, Eexternal = {|m〉}, but also an internal basis, Einternal = {|α〉}. The property
defining K then reads

∀z ∈ C, ∀|m〉 ,
∣∣m′〉 ∈ Eexternal, ∀|α〉 ,

∣∣α ′〉 ∈ Einternal :

Kz |m,α〉
〈
m′,α ′

∣∣= z∗ |m,α〉
〈
m′,α ′

∣∣K, (8.6)

where z∗ is the complex conjugate of z.
We will use the shorthand |Ψ∗〉 and Â∗ to represent K |Ψ〉 and KÂK, respectively.
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The defining equations are

|Ψ〉= ∑
m

∑
α

Ψm,α |m〉⊗ |α〉 ; (8.7)

|Ψ∗〉= K |Ψ〉K = ∑
m

∑
α

Ψ
∗
m,α |m〉⊗ |α〉 ; (8.8)

Â = ∑
m′m

∑
α ′α

Am′,α ′,m,α

∣∣m′〉〈m|⊗ ∣∣α ′〉〈α| ; (8.9)

Â∗ = KÂK = ∑
m′m

∑
α ′α

A∗m′,α ′,m,α

∣∣m′〉〈m|⊗ ∣∣α ′〉〈α| . (8.10)

Time-reversal affects external and internal degrees of freedom

We look for a representation of time reversal symmetry T̂ in terms of a general an-
tiunitary operator. Apart from complex conjugation, which acts on both external and
internal Hilbert space, we allow for an additional unitary operation on the internal de-
grees of freedom τ̂ , that is independent of position,

T̂ = τ̂K. (8.11)

We say that a Hamiltonian Ĥ is time reversal invariant (or time reversal symmetric)
with respect to time reversal represented by T̂ if

T̂ ĤT̂ −1 = Ĥ. (8.12)

In the same sense as for the chiral symmetry (cf. Sect. 1.4), when we talk about a
Hamiltonian, what we really mean is a set of Hamiltonians Ĥ(ξ ), with ξ representing
parameters that are subject to disorder. Thus, Eq. (8.12) should hold for any of the
Ĥ(ξ ), with T̂ independent of ξ .

8.1.3 Two types of time-reversal
We can require that a time reversal operator T̂ , when squared, should give at most a
phase:

τ̂Kτ̂K = τ̂ τ̂
∗ = eiφ Iinternal. (8.13)

If that was not the case, if the unitary operator τ̂ τ̂∗ was nontrivial, then it would repre-
sent a unitary symmetry of a time-reversal invariant Hamiltonian, since

τ̂ τ̂
∗Ĥ(τ̂ τ̂

∗)† = τ̂Kτ̂KĤKτ̂
†Kτ̂

† = τ̂KĤKτ̂
† = Ĥ. (8.14)

As explained in Sect. (1.4), when we want to investigate topological phases, the usual
first step is to get rid of unitary symmetries one by one (except for the lattice translation
symmetry of the bulk Hamiltonian), by restricting our attention to a single superselec-
tion sector of each symmetry. Thus, the only time reversal symmetries that are left are
those that fulfil Eq. (8.13).

The phase factor eiφ = T̂ 2 turns out to have only two possible values: +1 or −1.
Multiplying Eq. (8.13) from the left by τ̂†, we get τ̂∗ = eiφ τ̂† = eiφ (τ̂∗)T , where the
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superscript T denotes transposition. Iterating this last relation once more, we obtain
τ̂∗ = e2iφ τ̂∗, which means eiφ =±1, wherefore

T̂ 2 =±1. (8.15)

A Hamiltonian with no unitary symmetries can have only one type of time-reversal
symmetry: either T̂ 2 = +1, or T̂ 2 = −1, but not both. Assume a Hamiltonian had
two different time-reversal symmetries, T̂ and T̂1. Along the lines of Eq. (8.14), the
product of the two, the unitary operator T̂1T̂ would then represent a unitary symmetry.
The only exception is if T̂1 = eiχT̂ , when they are not really different symmetries.
However, in this case, since T̂ is antiunitary, these two symmetries square to the same
number, T̂ 2

1 = eiχT̂ eiχT̂ = T̂ 2.
An example for a time-reversal operator with T̂ 2 = +1 is given by the complex

conjugation K. An example for a time-reversal operator with T̂ 2 =−1 is time reversal
for a spin-1/2 particle. Since time reversal should also flip the spin, it is achieved by
T̂ = −iσ̂yK, with K defined on the basis of the eigenstates of σ̂z. The fact that this
works can be checked by T̂ σ̂ jT̂ −1 =−σ̂ j for j = x,y,z.

The operator τ̂ is symmetric or antisymmetric

Specifying the square of the time-reversal operation constrains the operator τ̂ to be
symmetric or antisymmetric. Consider

T̂ 2 = τ̂Kτ̂K = τ̂ τ̂
∗ =±1; =⇒ τ̂

∗ =±τ̂
† = (±τ̂

T )∗, (8.16)

where the subscript T denotes transpose in the same basis where the complex conjugate
is defined. Therefore,

T̂ 2 =+1 ⇐⇒ τ̂ = τ̂
T symmetric; (8.17)

T̂ 2 =−1 ⇐⇒ τ̂ =−τ̂
T antisymmetric. (8.18)

8.1.4 Time reversal of type T̂ 2 =−1 gives Kramers’ degeneracy
A defining property of an antiunitary operator T̂ is that for any pair of states |Ψ〉 and
|Φ〉, we have

〈T̂ Φ|T̂ Ψ〉= (τ̂ |Φ∗〉)†
τ̂ |Ψ∗〉 .= |Φ∗〉† τ̂

†
τ̂ |Ψ∗〉= 〈Φ∗ |Ψ∗〉= 〈Φ |Ψ〉∗ . (8.19)

Consider now this relation with |Φ〉= T̂ |Ψ〉:

〈T̂ Ψ|Ψ〉∗ = 〈T̂ 2
Ψ|T̂ Ψ〉= 〈±Ψ|T̂ Ψ〉=±〈T̂ Ψ|Ψ〉∗, (8.20)

where the ± stands for the square of the time reversal operator T̂ , which is ±1. If
T̂ 2 =+1, the above line gives no information, but if T̂ 2 =−1, it leads immediately to〈
T̂ Ψ

∣∣Ψ
〉
= 0, which means that for every energy eigenstate, its time-reversed partner,

which is also an energy eigenstate with the same energy, is orthogonal. This is known
as Kramers degeneracy.
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8.1.5 Time-Reversal Symmetry of a Bulk Hamiltonian
We now calculate the effect of time-reversal symmetry T̂ = τ̂K on the bulk momentum-
space Hamiltonian Ĥ(k). This latter is obtained, as in Sect. 1.2, by setting periodic
boundary conditions, and defining a plane wave basis in the corresponding external
Hilbert space as

|k〉= ∑
k

eimk |m〉 ; T̂ |k〉= |−k〉T̂ . (8.21)

Next, Ĥbulk is the part of Ĥ in the bulk, with periodic boundary conditions, whose
components in the plane wave basis define the bulk momentum-space Hamiltonian,

Ĥ(k) = 〈k| Ĥbulk |k〉 ; Ĥbulk = ∑
k
|k〉〈k|⊗ Ĥ(k). (8.22)

The effect of time-reversal symmetry follows,

T̂ ĤbulkT̂
−1 = ∑

k
|−k〉〈−k|⊗ τ̂Ĥ(k)∗τ̂† = ∑

k
|k〉〈k|⊗ τ̂Ĥ(−k)∗τ̂†. (8.23)

We read off the action of T̂ on the bulk momentum-space Hamiltonian, and obtain the
necessary requirement of time-reversal symmetry as

τ̂Ĥ(−k)∗τ̂† = Ĥ(k). (8.24)

Note that time-reversal symmetry of the bulk Hamiltonian is necessary, but not suffi-
cient, for time-reversal symmetry of the system: perturbations at the edges can break
time reversal.

A direct consequence of time-reversal symmetry is that the dispersion relation of a
time-reversal symmetric Hamiltonian has to be symmetric with respect to inversion in
the Brillouin zone, k→−k. Indeed, take an eigenstate of Ĥ(k), with

Ĥ(k) |u(k)〉= E(k) |u(k)〉 . (8.25)

Using time-reversal symmetry, Eq. (8.24), we obtain

τ̂Ĥ(−k)∗τ̂† |u(k)〉= E(k) |u(k)〉 . (8.26)

Multiplying from the left by τ̂† and complex conjugating, we have

Ĥ(−k)τ̂T |u(k)〉∗ = E τ̂
T |u(k)〉∗ . (8.27)

This last line tells us that for every eigenstate |u(k)〉 of Ĥ(k), there is a time-reversed
partner eigenstate of Ĥ(−k) at the same energy, τ̂T |u(k)〉∗. This implies inversion
symmetry of the energies, E(k) = E(−k). Note, however, that E(k) = E(−k) is not
enough to guarantee time-reversal symmetry.

It is especially interesting to look at points in the Brillouin zone which map unto
themselves under inversion: the Time-reversal invariant momenta (TRIM). In d di-
mensions there are 2d such points, one of which is at the center of the Brillouin zone
(so-called Γ point), and others at the edges. At such momenta, Eq. (8.24) implies that

τ̂Ĥ(kTRIM)∗τ̂† = Ĥ(kTRIM). (8.28)

If T̂ 2 =−1, then because of Kramers degeneracy, at a TRIM, every eigenvalue of the
bulk momentum-space Hamiltonian is (at least) twice degenerate.
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8.2 Doubling the Hilbert Space for Time-Reversal Sym-
metry

There is a simple way to construct a system with Time-Reversal Symmetry, ĤTRI, start-
ing from a lattice Hamiltonian Ĥ. We take two copies of the system, and change the
Hamiltonian in one of them to Ĥ∗ = KĤK. We then couple them, much as we did to
layer Chern insulators on top of each other in Sect. 6.2.2:

ĤTRI = |0〉〈0|⊗ Ĥ + |1〉〈1|⊗ Ĥ∗+
(
|0〉〈1|⊗ Iexternal⊗Ĉ+h.c.

)
, (8.29)

where the hopping between the copies is accompanied by a position-independent op-
eration Ĉ on the internal degree of freedom. In a matrix form, in real-space basis (and
somewhat simplified notation), this reads

HTRI =

[
H C
C† H∗

]
. (8.30)

We will use ŝx,y,z to denote the Pauli operators acting on the “copy degree of free-
dom”, defined as

ŝx/y/z = σ̂x/y/z⊗ Iexternal⊗ Iinternal. (8.31)

Using these operators, the time-reversal invariant Hamiltonian reads

ĤTRI =
1+ ŝz

2
⊗ Ĥ +

1− ŝz

2
⊗ Ĥ∗

+
ŝx + iŝy

2
⊗ Iexternal⊗Ĉ+

ŝx− iŝy

2
⊗ Iexternal⊗Ĉ†. (8.32)

The choice of the coupling operator Ĉ is important, as it decides which type of
time-reversal symmetry ĤTRI will have.

Time reversal with T̂ 2 =−1 requires antisymmetric coupling operator Ĉ

If we want a time-reversal symmetry that squares to −1, we can go for

T̂ = iŝyK; T̂ −1 = K(−i)ŝy. (8.33)

Here the factor of i included for convenience, so the matrix of iŝy is real. The require-
ment of time-reversal symmetry can be obtained using

(iŝyK)HTRI(iŝyK)−1 =

[
0 1
−1 0

]
·
[

H∗ C∗

CT H

]
·
[

0 −1
1 0

]
=

[
CT H
−H∗ −C∗

]
·
[

0 −1
1 0

]
=

[
H −CT

−C∗ H∗

]
. (8.34)

We have time-reversal symmetry represented by T̂ = iŝyK, if

iŝyKĤTRI(iŝyK)−1 = ĤTRI ⇔ Ĉ =−ĈT , (8.35)

where the subscript T denotes transposition in the same fixed internal basis that is used
to define complex conjugation K. General proof?
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Symmetric coupling operator Ĉ gives time reversal with T̂ 2 =+1

If the coupling operator is symmetric, Ĉ = ĈT , then the same derivation as above shows
that we have time-reversal symmetry represented by T̂ = ŝxK,

ŝxKĤTRIKŝx = ĤTRI ⇔ Ĉ = ĈT . (8.36)

This time-reversal operator squares to +1.
If all we want is a lattice Hamiltonian with a time-reversal symmetry that squares

to +1, we don’t even need to double the Hilbert space. We can just take

T̂ = K; ĤTRI =
Ĥ + Ĥ∗

2
= KĤTRIK. (8.37)

Colloquially, this construction is referred to as taking the real part of the Hamiltonian.

8.2.1 A concrete example: the Bernevig-Hughes-Zhang model
To have an example, we use the construction above to build a toy model – called
BHZ model – for a time-reversal invariant topological insulator starting from the QWZ
model of Chapt. 6. We follow the construction through using the bulk momentum-
space Hamilonian, and obtain

ĤBHZ(k) = ŝ0⊗ [(u+ coskx + cosky)σ̂z + sinkyσ̂y)]+ ŝz⊗ sinkxσ̂x + ŝx⊗Ĉ, (8.38)

where Ĉ is a Hermitian coupling operator acting on the internal degree of freedom. For
Ĉ = 0, the Hamiltonian ĤBHZ reduces to the 4-band toy model for HgTe, introduced by
Bernevig, Hughes and Zhang [5].

Two Time-Reversal Symmetries if there is no coupling

If there is no coupling between the copies, Ĉ = 0, the BHZ model has two different
time-reversal symmetries, T̂ = iŝyK and T̂2 = ŝxK, due to its block diagonal structure
reflecting a unitary symmetry, ŝzĤBHZŝ†

z = ĤBHZ. In this situation, the type of predic-
tions we can make will depend on which of these symmetries is robust against disorder.
In the following we will require the T̂ 2 = −1 symmetry. If this symmetry is robust,
then everything we do will apply to the Ĉ = 0 case of ĤBHZ. The extra time reversal
symmetry in that case is just a reminder that most features could be calculated in a
more simple way, by working in the superselection sectors of ŝz separately.

8.3 Edge States in 2-dimensional time-reversal invari-
ant insulators

We now consider the situation of edge states in a two-dimensional lattice Hamiltonian
with time-reversal symmetry, much in the same way as we did for Chern insulators in
Sect. 6.2.
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Figure 8.1: Stripe dispersion relations of the BHZ model, with sublattice potential
parameter u =−1.2. Right/left edge states (more than 60% weight on the last/first two
columns of unit cells) marked in dark red/light blue. (a): uncoupled layers, Ĉ = 0. (b):
Symmetric coupling Ĉ = 0.3σ̂x gaps the edge states out. (c): Antisymmetric coupling
Ĉ = 0.3σ̂y cannot open a gap in the edge spetrum.

8.3.1 An example: the BHZ model with different types of coupling

We start with the concrete example of the BHZ model. We set the sublattice potential
parameter u =−1.2, and plot the edge dispersion relation, defined in the same way as
for the Chern insulators in Section 6.2.

As long as there is no coupling between the two copies, Ĉ = 0, the system ĤBHZ
is a direct sum of two Chern insulators, with opposite Chern numbers. As Fig. 8.1
(a) shows, on each edge, there is a pair of edge state branches: a branch on the layer
with Hamiltonian Ĥ, and a counterpropagating branch on the layer with Ĥ∗. Although
these two edge state branches cross, this crossing will not turn into an anticrossing:
the states cannot scatter into each other since they are on different layers. The two
edge state branches are linked by time-reversal: they occupy the same position, but
describe propagation in opposite directions. In fact, they are linked by both time-
reversal symmetries this system has, by ŝxK and iŝyK.

A coupling between the layers can can gap the edge states out, as shown in Fig. 8.1
(b). We here used Ĉ = 0.3σ̂x, which respects the T̂ 2 = +1 symmetry but breaks the
T̂ 2 = −1 one. The crossings between counterpropagating edge states on the same
edge have turned into anticrossings, as expected, since the coupling allows particles
to hop between the counterpropagating edge states (on the same edge, but in different
layers).

We see something different if we couple the layers while respecting the T̂ 2 =−1
time reversal symmetry, by, e.g., Ĉ = 0.3σy. As Fig. 8.1 (c) shows, the crossing at
ky = 0 between the edge state branches now does not turn into an anticrossing. As long
as the coupling is not strong enough to close the bulk gap, the edge states here appear
to be protected.

8.3.2 Edge states in T̂ 2 =−1

The states form one-dimensional edge state bands in the one-dimensional Brillouin
zone kx = −π, . . . ,π , shown schematically in Fig. 8.2. In general, an edge will host
edge states propagating in both directions. However, due to time-reversal symme-
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Figure 8.2: Edge states on a single edge of a 2-dimensional time-reversal invariant
topological insulator with T̂ 2 = −1, as the edge region undergoes a continuous de-
formation, parametrized by a, respecting the symmetry and the translational invariance
along the edge. In (a)–(d), the edge state dispersions relations are shown, in the full
edge Brillouin zone kx = −π, . . . ,π , and in the energy window corresponding to the
bulk gap. For clarity, right- (left-) propagating edge states are denoted by continuous
(dashed) lines. Due to the deformation of the Hamiltonian, the edge state branches
can move, bend, and couple, while the bulk remains unchanged. From (a) to (b),
the crossing points between counterpropagating edge states become anticrossings, i.e.,
gaps open in these pairs of dispersion relation branches as a usual consequence of any
parameter coupling them. Crossings at kx = 0 and kx = π cannot be gapped, as this
would lead to a violation of the Kramers theorem. From (b) to (d), these gaps become
so large that at energy E = 0, the number of edge states drops from 6 (3 Kramers
pairs) to 2 (1 Kramers pair). The kx values of the edge states at 0 energy are plotted in
(e), where this change in the number of edge states shows up as an “annihilation” of
right-propagating and left-propagating edge states.

try, the dispersion relations must be left-right symmetric when plotted against the
wavenumber kx along the edge direction. This means that the number N+ of right-
moving edge states (these are plotted with solid lines in Fig. 8.2), and N−, the number
of left-moving edge states (dashed lines) have to be equal at any energy,

N+(E) = N−(E). (8.39)

As with Chern insulators, we next consider the effect of adiabatic deformations
of the clean Hamiltonian on edge states. We consider terms in the Hamiltonian that
conserve translational invariance along the edge, and respect Time Reversal Symmetry.
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The whole discussion of Sect. 6.3 applies, and therefore adiabatic deformations cannot
change the signed sum of of the left- and right-propagating edge states in the gap.
However, time-reversal symmetry restricts this sum to zero anyway.

Time reversal symmetry that squares to T̂ 2 = −1, however, provides a further re-
striction: adiabatic deformations can only change the number of edge states by integer
multiples of four (pairs of pairs). To understand why, consider the adiabatic deforma-
tion corresponding to Fig. 8.2 (a)-(d). Degeneracies in the dispersion relation can be
lifted by coupling the edge states, as it happens in (b), and this can lead to certain edge
states disappearing at certain energies, as in (c). This can be visualized by plotting the
kx values at E = 0 of the branches of the edge state dispersion as functions of the defor-
mation parameter (which is some combination of the parameters of the Hamiltonian)
a, as in Fig. 8.2 (e). Due to the deformation, two counterpropagating edge states can
“annihilate”, when the corresponding modes form an avoided crossing. If this happens
at a generic momentum value k, as in (c), then, due to the time reversal invariance, it
also has to happen at −k, and so the number of edge states decreases by 4, not by 2.
The special momentum values of kx are the TRIM, which in this case are kx = 0,±π . If
the edge state momenta meet at a TRIM, as in (b) at kx = 0, their “annihilation” would
change the number of edge states by 2 and not by 4. However, this cannot happen, as
it would create a situation that violates the Kramers degeneracy: at the TRIM, energy
eigenstates have to be doubly degenerate. The deformations in Fig. 8.2 can be also read
from (d) to (a), and therefore apply to the introduction of new edge states as well.

8.3.3 Z2 invariant: parity of edge state pairs
At any energy inside the bulk gap, the parity of the number of edge-states Kramers
pairs for a given dispersion relation is well defined. In Fig. 8.2(a), there are 3 edge-
state Kramers pairs for any energy in the bulk gap, i.e., the parity is odd. In Fig. 8.2(c),
there are 3 of them for every energy except for energies in the mini-gap of the bands
on the left and right for which the number of edge-state Kramers pairs is 1, and for the
upper and lower boundaries of the mini-gap [the former depicted by the horizontal line
in Fig. 8.2(c)], where the number of Kramers pairs is 2. The parity is odd at almost
every energy, except the two isolated energy values at the mini-gap boundaries.

The general proposition is that the parity of the number of edge-state Kramers pairs
at a given edge for a given Hamiltonian at a given energy is independent of the choice
of energy, as long as this energy is inside the bulk gap. Since in a time-reversal invariant
system, all edge states have counter-propagating partners, we can express this number
as

D =
N(E)

2
mod2 =

N+(E)+N−(E)
2

mod2, (8.40)

where N(E) = N+(E)+N−(E) is the total number of edge states at an edge. A caveat
is that there are a few isolated energy values where this quantity is not well defined,
e.g., the boundaries of mini-gaps in the above example, but these energies form a set
of zero measure.

Since D is a topological invariant, we can classify two-dimensional time-reversal
invariant lattice models according to it, i.e., the parity of the number of edge-state
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Kramers pairs supported by a single edge of the terminated lattice. Because it can take
on two values, this ‘label’ D is called the Z2 invariant, and is represented by a bit taking
on the value 1 (0) if the parity is odd (even).

As a final step, we should next consider disorder that breaks translational invarance
along the edge, in the same way as we did for Chern insulators. Due to the presence of
edge states propagating in both directions along the edge, the treatment of disorder is a
bit trickier than it was for Chern states.

8.4 Absence of backscattering

A remarkable property of Chern insulators is that they support chiral edge states, i.e.,
edge states that have no counter-propagating counterparts. A simple fact implied by the
chiral nature of these edge states is that impurities are unable to backscatter a particle
that occupies them. As we argue below, absence of backscattering is also characteristic
of disordered two-dimensional time-reversal invariant topological insulators, although
the robustness is guaranteed only against time-reversal symmetric scatterers.

In this Chapter, we introduce the scattering matrix, a simple concept that allows
for a formal analysis of scattering at impurites, and discuss the properties of edge state
scattering in two-dimensional time-reversal invariant topological insulators. The scat-
tering matrix will also serve as a basic tool in the subsequent chapter, where we give a
simple theoretical description of electronic transport of phase-coherent electrons, and
discuss observable consequences of the existence and robustness of edge states.

8.4.1 The scattering matrix

Consider a phase-coherent two-dimensional conductor with a finite width in the y di-
rection, and discrete translational invariance along the x axis. Think of the system as
having periodic boundary conditions in the x direction. As earlier, we describe the sys-
tem in terms of a simple lattice model, where the unit cells form a square lattice of size
Nx×Ny, and there might be an internal degree of freedom associated to the unit cells.

As the system has discrete translational invariance along x, we can also think of it
as a one-dimensional lattice, whose unit cell incorporates both the internal degree of
freedom of the two-dimensional lattice and the real-space structure along the y axis.
Using that picture, it is clear that the electronic energy eigenstates propagating along
the x axis at energy E have a product structure, as required by the one-dimensional
Bloch’s theorem:

|l,±〉=
∣∣kl,±

〉
⊗
∣∣Φl,±

〉
, (8.41)

On the right hand side, the first ket corresponds to a usual momentum eigenstate
|k〉 = 1√

Nx
∑

Nx
mx=1 eikmx |mx〉 propagating along x, whereas the second ket incorporates

the shape of the transverse standing mode as well as the internal degree of freedom.
The states appearing in Eq. (8.41) are normalized to unity. The integer l = 1,2, . . . ,N
labels the propagating modes, also referred to as scattering channels. The + and −
signs correspond to right-moving and left-moving states, respectively; the direction of
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movement is assigned according to the sign of the group velocity:

vl,± =
dE(k)

dk

∣∣∣∣
k=kl,±

, (8.42)

where E(k) is the dispersion relation of the one-dimensional band hosting the state
|l,±〉 .

Now we re-normalize the states above, such that different states carry the same par-
ticle current through an arbitrary vertical cross section of the system. We will use these
current-normalized wave functions in the definition of the scattering matrix below,
which guarantees that the latter is a unitary matrix. According to the one-dimensional
relation we obtained between the current and the group velocity in Eq. (5.16), the
current-normalized states can be defined using the group velocity as

|l,±〉c =
1√
|vl,±|

|l,±〉 . (8.43)

Figure 8.3: Disordered region (gray) obstructing electrons in a two-dimensional phase-
coherent conductor. The scattering matrix S relates the amplitudes a(in)L and a(in)R of
incoming waves to the amplitudes a(out)

L and a(out)
R of outgoing waves.

Now consider the situation when the electrons are obstructed by a disordered region
in the conductor, as shown in Fig. 8.3. A monoenergetic wave incident on the scattering
region is characterized by a vector of coefficients

a(in) =
(

a(in)L,1 ,a
(in)
L,2 , . . . ,a

(in)
L,N ,a

(in)
R,1 ,a

(in)
R,2 , . . . ,a

(in)
R,N

)
. (8.44)

The first (second) set of N coefficients correspond to propagating waves (8.43) in the
left (right) lead L (R), that is, the clean regions on the left (right) side of the disordered
region. The reflected and transmitted parts of the wave are described by the vector

a(out) =
(

a(out)
L,1 ,a(out)

L,2 , . . . ,a(out)
L,N ,a(out)

R,1 ,a(out)
R,2 , . . . ,a(out)

R,N

)
. (8.45)
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The corresponding energy eigenstate reads

|ψ〉=
N

∑
l=1

a(in)
L,l |l,+,L〉c +a(out)

L,l |l,−,L〉c +a(in)
R,l |l,−,R〉c +a(out)

R,l |l,+,R〉c . (8.46)

Here, the notation for the current-normalized states introduced in Eq. (8.43) has been
expanded by the lead index L/R.

The scattering matrix S relates the two vectors introduced in Eqs. (8.44) and (8.45):

a(out) = Sa(in). (8.47)

The size of the scattering matrix is 2N×2N, and it has the following block structure:

S =

(
r t ′

t r′

)
(8.48)

where r and r′ are N×N reflection matrices describing reflection from left to left and
from right to right, and t and t ′ are transmission matrices describing transmission from
left to right and right to left.

Particle conservation, together with the current normalization Eq. (8.43), implies
the unitarity of the scattering matrix S. In turn, its unitary character implies that the
Hermitian matrices tt†, t ′t ′†, 1− rr†, and 1− r′r′† all have the same set of real eigen-
values T1,T2, . . .TN , called transmission eigenvalues.

8.4.2 A single Kramers pair of edge states

Now we use the scattering matrix S to characterize defect-induced scattering of an elec-
tron occupying an edge state of a two-dimensional time-reversal invariant topological
insulator. Consider a half-plane of such a homogeneous lattice which supports exactly
one Kramers pair of edge states at a given energy E in the bulk gap, as shown in Fig.
8.4. Consider the scattering of the electron incident on the defect from the left side in
Fig. 8.4. The scatterer is characterized by the Hamiltonian V . We will show that the
impurity cannot backscatter the electron as long as V is time-reversal symmetric.

Figure 8.4: Scattering of an edge state on a time-reversal symmetric defect V . In a two-
dimensional time-reversal invariant topological insulator with a single Kramers pair of
edge states, the incoming electron is transmitted through such a defect region with unit
probability.
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We choose our propagating modes such that the incoming and outgoing states are
related by time-reversal symmetry, i.e.,

|l,−,L〉c = T̂ |l,+,L〉c (8.49a)

|l,+,R〉c = T̂ |l,−,R〉c . (8.49b)

Also, recall that T̂ 2 =−1. In the presence of the perturbation V , the edge states of the
disorder-free system are no longer energy eigenstates of the system. A general scatter-
ing state |ψ〉 at energy E is characterized by the vector a(in) of incoming amplitudes.
According to Eq. (8.46) and the definition (8.47) of the scattering matrix S, the energy
eigenstates outside the scattering region can be expressed as:

|ψ〉= ∑
N
l=1

[
a(in)L,l |l,+,L〉c +a(in)R,l |l,−,R〉c (8.50)

+
(

Sa(in)
)

L,l
|l,−,L〉c +

(
Sa(in)

)
R,l
|l,+,R〉c

]
.

Using Eq. (8.49), we find

−T̂ |ψ〉= ∑
N
l=1

[
−a(in)∗L,l |l,−,L〉c−a(in)∗R,l |l,+,R〉c (8.51)

+
(

S∗a(in)∗
)

L,l
|l,+,L〉c +

(
S∗a(in)∗

)
R,l
|l,−,R〉c

]
.

Due to time reversal symmetry, this state −T̂ |ψ〉 is also an energy eigenstate having
the same energy as |ψ〉. Using the unitary character of the scattering matrix, the state
−T̂ |ψ〉 can be rewritten as

−T̂ |ψ〉= ∑
N
l=1

[(
S∗a(in)∗

)
L,l
|l,+,L〉c +

(
S∗a(in)∗

)
R,l
|l,−,R〉c (8.52)

+
(
−ST S∗a(in)∗

)
L,l
|l,−,L〉c +

(
−ST S∗a(in)∗

)
R,l
|l,+,R〉c

]
.

where ST denotes the transpose of S, is also an energy eigenstate having the same
energy as |ψ〉. Comparing Eqs. (8.50) and (8.51), and knowing that the scattering
matrix at a given energy is uniquely defined, we conclude that S =−ST , that is(

r t ′

t r′

)
= S =−ST =

(
−r −t
−t ′ −r′

)
(8.53)

implying
r = r′ = 0, (8.54)

and hence perfect transmission of each of the two incoming waves.
If the lattice has the geometry of a ribbon, and the time-reversal symmetric scat-

terer extends to both edges, then the absence of backscattering is not guaranteed. This
is illustrated in Fig. 8.5, where we compare three examples. In (a), the defect is formed
as a wide constriction on both edges, with a width much larger than the characteristic
length of the penetration of the edge states to the bulk region of the ribbon. Backscat-
tering between states at the same edge is forbidden due to time reversal symmetry, and
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Figure 8.5: Backscattering of edge states at a constriction. The states forming the
edge-state Kramers pairs are depicted as solid and dashed lines. (a) A time-reversal
symmetric defect localized to the edges, such as a small constriction shown here, is
unable to backscatter the incoming electron. (b) Backscattering is possible between
different edges, if the width of the constriction is of the order of the decay length of the
edge states. (c) A finite spatial gap between the left and right part of the wire implies
zero transmission.

backscattering between states at different edges is forbidden due to a large spatial sepa-
ration of their corresponding wave functions. In (b), a similar but narrower constriction
with a width comparable to the penetration length of the edge states does allow for scat-
tering between states on the lower and upper edges. In this case, backscattering from a
right-moving state on one edge to a left-moving state at the other edge is not forbidden.
In (c), the constriction divides the ribbon to two unconnected parts, resulting in zero
transmission through the constriction.

Naturally, backscattering is also allowed if the scatterer is not time-reversal sym-
metric, or if the scattering process is inelastic. Backscattering is not forbidden for the
‘unprotected’ edge states of topologically trivial (D= 0) two-dimensional time-reversal
invariant insulators.

8.4.3 An odd number of Kramers pairs of edge states

The above statement (8.54) implying unit transmission can be generalized for arbitrary
two-dimensional time-reversal invariant topological insulator lattice models, includ-
ing those where the number of edge-state Kramers pairs N is odd but not one. The
proposition is that in such a system, given a time-reversal symmetric scatterer V and
an arbitrary energy E in the bulk gap, there exists at least one linear combination of the
incoming states of energy E from each side of the defect that is perfectly transmitted
through the defect.
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The proof follows that in the preceding section, with the difference that the quanti-
ties r and t describing reflection and transmission are N×N matrices, and that the an-
tisymmetric nature of the S-matrix S =−ST implies the antisymmetry of the reflection
matrices r =−rT . According to Jacobi’s theorem, every odd-dimensional antisymmet-
ric matrix has a vanishing determinant, which is implied by

det(r) = det(rT ) = det(−r) = (−1)N det(r) =−det(r), (8.55)

where we used the antisymmetry of r in the second step and the oddness of N in the
last step. As a consequence of Eq. (8.55) we know det(r) = 0, hence det(r†r) =
det(r†)det(r) = 0. Therefore, at least one eigenvalue of r†r is zero, which implies that
at least one transmission eigenvalue Tl is unity.

8.4.4 Robustness against disorder

Figure 8.6: A disordered two-dimensional time-reversal invariant topological insulator
contacted with two electrodes. Disorder is ‘switched off’ and the edge is ‘straightened
out’ within the dashed box, hence the edge modes there resemble those of the disorder-
free lattice.

The absence-of-backscattering result (8.54) implies a remarkable statement regard-
ing the existence of (at least) one perfectly transmitting edge state in a finite-size disor-
dered sample of a two-dimensional time-reversal invariant topological insulator. (See
also the discussion about Fig. 6.9 in the context of Chern Insulators). Such a sample
with an arbitrarily chosen geometry is shown in Fig. 8.6. Assume that the disorder is
time reversal symmetric and localized to the edge of the sample. We claim that any cho-
sen segment of the edge of this disordered sample supports, at any energy that is deep
inside the bulk gap, (at least) one counterpropagating Kramers pair of edge states that
are delocalized along the edge and able to transmit electrons with unit probability. This
is a rather surprising feature in light of the fact that in truly one-dimensional lattices,
a small disorder is enough to induce Anderson localization of the energy eigenstates,
and hence render the system an electronic insulator.

To demonstrate the above statement, let us choose an edge segment of the disor-
dered sample for consideration, e.g., the edge segment running outside the dashed box
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in Fig. 8.6. Now imagine that we ‘switch off’ disorder in the complementer part of
the edge of the sample, and ‘straighten out’ the geometry of that complementer part,
the latter being shown within the dashed box of Fig. 8.6. Furthermore, via an appro-
priate spatial adiabatic deformation of the Hamiltonian of the system in the vicinity of
the complementer part of the edge (i.e., within the dashed box in Fig. 8.6), we make
sure that only a single edge-state Kramers pair is present within this complementer
part. The existence of such an adiabatic deformation is guaranteed by the topologically
nontrivial character of the sample, see the discussion of Fig. 8.2. The disordered edge
segment, outside the dashed box in Fig. 8.6, now functions as a scattering region for
the electrons in the straightened part of the edge. From the result (8.54) we know that
such a time reversal symmetric scatterer is unable to induce backscattering between
the edge modes of the straightened part of the edge, hence we must conclude that the
disordered segment must indeed support a perfectly transmitting edge state in each of
the two propagation directions.

In the next chapter, we show that the electrical conductance of such a disordered
sample is finite and ‘quantized’, if it is measured through a source and a drain contact
that couple effectively to the edge states.



Chapter 9

The Z2 invariant of
two-dimensional topological
insulators

*A time-reversal invariant topological insulator either has no topologically protected
edge states, or one pair of such edge states. Thus, its bulk topological invariant is
either 0 or 1: it is a Z2 number. Although obtaining a single yes/no answer might seem
easier than the calculation of a Chern number, the Z2 invariant is notoriously difficult
to calculate. In this Chapter we detail a way to calculate it that follows the same logic
as before for the Chern number.

In the previous Chapter, we have seen that two-dimensional insulators can host
topologically protected edge states even if time-reversal symmetry is not broken, pro-
vided it squares to −1, i.e., T̂ 2 = −1. Such systems fall into two categories: no
topologically protected edge states (trivial), or one pair of such edge states (topolog-
ical). This property defines a Z2 invariant for these insulators. In the spirit of the
bulk–boundary correspondence, we expect that the bulk momentum-space Hamiltonian
Ĥ(k) should have a corresponding topological invariant (generalized winding number).

The bulk Z2 invariant is notoriously difficult to calculate. The original definition of
the invariant[19, 11] uses a smooth gauge in the whole Brillouin zone, that is hard to
construct [31], which makes the invariant difficult to calculate. An altogether different
approach, which is robust and calculatable, uses the scattering matrix instead of the
Hamiltonian[13].

In this Chapter we review a definition of the bulk Z2 invariant[37] based on the
dimensional reduction to charge pumps. This is equivalent to the originally defined
bulk invariants[37], but no smooth gauge is required to calculate it. It can be outlined
as follows.

1. Start with a bulk Hamiltonian Ĥ(kx,ky). Reinterpret ky as time: Ĥ(kx,ky) is a
bulk one-dimensional Hamiltonian of an adiabatic pump. This is the dimensional
reduction we used for Chern insulators in Chapt. 6.

125
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2. Track the motion, with ky playing the role of time, of pumped particles in the
bulk using Wannier states. We will call this the Wannier center flow.

3. Time-reversal symmetry restricts the Wannier center flow. As a result, in some
cases the particle pump cannot be turned off adiabatically – in those cases the
insulator is topological. If it can be turned off, the insulator is trivial.

In order to go through this argument, we will first gather the used mathematical tools,
i.e., generalize the Berry phase and the Wannier states. We will then define the Wannier
center flow, show that it can be calculated from the Wilson loop. Finally, we will use
examples to illustrate the Z2 invariant and argue that it gives the number of topologi-
cally protected edge states.

9.1 Tools: Nonabelian Berry phase, multiband Wan-
nier states

To proceed to calculate the topological invariants, we need to generalize the tools of
geometric phases, introduced in Chapt. 2, and of the Wannier states of Chapt. 3 to
manifolds consisting of more bands.

9.1.1 Preparation: Nonabelian Berry phase

We defined the Berry phase in Chapt. 2, as the relative phase around a loop L of N states∣∣Ψ j
〉
, with j = 1,2, . . . ,N. Since the Berry phase is gauge independent, it is really a

property of the loop over N one-dimensional projectors
∣∣Ψ j
〉〈

Ψ j
∣∣. In most physical

applications – in our case as well – the elements of the loop are specified as projectors
to a eigenstates of some Hamiltonian for N different settings of some parameters.

As a generalization of the Berry phase, we ask about the relative phase around a
loop on N projectors, each of which is NF dimensional. The physical motivation is
that these are eigenspaces of a Hamiltonian, i.e., projectors to subspaces spanned by
degenerate energy eigenstates[35].

Wilson loop

Consider a loop over N ≥ 3 sets of states from the Hilbert space, each consisting of
NF ∈ N orthonormal states, {|un(k)〉 |n = 1, . . . ,NF}, with k = 1, . . . ,N. We quantify
the overlap between set k and set l by the NF ×NF overlap matrix M(kl), with elements

M(kl)
nm = 〈un(k) | um(l)〉 , (9.1)

with n,m = 1 . . . ,NF .
The Wilson loop is the product of the overlap matrices along the loop,

W = M(12)M(23) . . .M(N−1,N)M(N1). (9.2)
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We will be interested in the eigenvalues λn of the Wilson loop, with n = 1, . . . ,NF ,

W vn = λnvn, (9.3)

where vn is the nth eigenvector, with n = 1, . . . ,NF .
Note that we could have started the Wilson loop, Eq. (9.2), at the kth group instead

of the first one,

W (k) = M(k,k+1)M(k+1,k+2) . . .M(N,1)M(1,2) . . .M(k−1,k). (9.4)

Although the elements of the matrix W (k) depend on the starting point k, the eigenval-
ues λn do not. Multiplying Eq. (9.3) from the left by M(k,k+1) . . .M(N,1), we obtain

W (k)
(

M(k,k+1) . . .M(N,1)
)

vn = λn

(
M(k,k+1) . . .M(N,1)

)
vn. (9.5)

U(NF) gauge invariance of the Wilson loop

We will now show that the eigenvalues of the Wilson loop over groups of Hilbert space
vectors only depend on the linear spaces subtended by the vectors of each group. Each
group can undergo an independent unitary operation to redefine the vectors, this cannot
affect the eigenvalues of the Wilson loop. This is known as the invariance under a
U(NF) gauge transformation.

A simple route to prove the U(NF) gauge invariance is via the operator Ŵ defined
by the Wilson loop matrix W in the basis of group 1,

Ŵ =
NF

∑
n=1

NF

∑
m=1
|un(1)〉Wnm 〈um(1)| . (9.6)

This operator has the same eigenvalues as the Wilson loop matrix itself. It can be
expressed using the projectors to the subspaces spanned by the groups of states,

P̂k = ∑
n
|un(k)〉〈un(k)| . (9.7)

The Wilson loop operator reads,

Ŵ = P̂1P̂2P̂3 . . . P̂N P̂1. (9.8)

We show this explicitly for N = 3,

Ŵ =
NF

∑
n=1

NF

∑
n2=1

NF

∑
n3=1

NF

∑
m=1
|un(1)〉

〈un(1) | un2(2)〉
〈
un2(2)

∣∣ un3(3)
〉
〈unN (N) | um(1)〉〈um(1)|= P̂1P̂2P̂3P̂1. (9.9)

The generalization to arbitrary N ≥ 3 is straightforward.
Equation (9.8) makes it explicit that the Wilson loop operator, and hence, the eigen-

values of the Wilson loop, are U(NF) gauge invariant.
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9.1.2 Wannier states for degenerate multiband one-dimensional in-
sulators

We now generalize the Wannier states of Sect. 3.1 to a one-dimensional insulator with
NF occupied bands. In case of nondegenerate bands, a simple way to go would be to
define a set of Wannier states for each band separately. However, time reversal symme-
try forces degeneracies in the bands, at least at time reversal invariant momenta, and so
this is not possible. Moreover, even in the nondegenerate case it could be advantegeous
to mix states from different bands to create more tightly localized Wannier states.

To be specific, and to obtain efficient numerical protocols, we take a finite sample of
a one-dimensional insulator of N = 2M unit cells, with periodic boundary conditions.
An orthonormal set of negative energy bulk eigenstates reads

|Ψn(k)〉= |k〉⊗ |un(k)〉=
1√
N

N

∑
m=1

eimk |m〉⊗ |un(k)〉 (9.10)

with, as before, k ∈ {δk,2δk, . . . ,Nδk}, and δk = 2π/N. The index n labels the eigen-
states, with n = 1, . . . ,NF for occupied, negative energy states. The |un(k)〉 are the
negative energy eigenstates of the bulk momentum-space Hamiltonian Ĥ(k). We will
not be interested in the positive energy eigenstates.

Although we took a specific set of energy eigenstates above, because of degenera-
cies at the time-reversal invariant momenta, we really only care about the projector P̂
to the negative energy subspace. This is defined as

P̂ = ∑
k

NF

∑
n=1
|Ψn(k)〉〈Ψn(k)|= ∑

k
|k〉〈k|⊗ P̂(k); (9.11)

P̂(k) =
NF

∑
n=1
|un(k)〉〈un(k)| . (9.12)

Defining properties of Wannier states

We will need a total number NF N of Wannier states to span the occupied subspace,
|wn( j)〉, with j = 1, . . . ,N, and n= 1, . . . ,NF . These are defined by the usual properties:

〈
wn′( j′)

∣∣ wn( j)
〉
= δ j′ jδn′n Orthonormal set (9.13a)

N

∑
j=1

NF

∑
n=1
|wn( j)〉〈wn( j)|= P̂ Span occupied subspace (9.13b)

∀m : 〈m+1 | wn( j+1)〉= 〈m | wn( j)〉 Related by translation (9.13c)

lim
N→∞
〈wn(N/2)|(x̂−N/2)2 |wn(N/2)〉< ∞ Localization (9.13d)

with the addition in Eq. (9.13c) defined modulo N.
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The Ansatz of Sect. 3.1 for the Wannier states, Eq. (3.11), generalizes to the multi-
band case as

|wn( j)〉= 1√
N

Nδk

∑
k=δk

e−i jk
NF

∑
p=1

Unp(k)
∣∣Ψp(k)

〉
. (9.14)

Thus, each Wannier state can contain contributions from all of the occupied bands, the
corresponding weights given by a k-dependent unitary matrix U(k).

The projected unitary position operator

As we did in Sect. 3.1, we will specify the set of Wannier states as the eigenstates of
the unitary position operator restricted the occupied bands,

X̂P = P̂eiδk x̂P̂. (9.15)

To obtain the Wannier states, we go through the same steps as in Sect. 3.1, with an
extra index n. We outline the derivations and detail some of the steps below. You can
then check whether the properties required of Wannier states, Eq. (9.13), are fulfilled,
in the same way as in the single-band case.

We note that for finite N, the projected unitary position X̂P is not a normal operator,
i.e., it does not commute with its adjoint. As a result, its eigenstates form an orthonor-
mal set only in the thermodynamic limit of N→∞. Just as in the single-band case, this
can be seen as a discretization error, which disappears in the limit N→ ∞.

The first step is to rewrite the operator X̂P. For this, consider〈
Ψn′(k

′)
∣∣ X̂ |Ψn(k)〉= δk+δk,k′ 〈un′(k+δk) | un(k)〉 (9.16)

where δk+δk,k′ = 1 if k′ = k + δk, and 0 otherwise. Using this, the projected unitary
position operator can be rewritten as

X̂P = ∑
k′k

NF

∑
n′,n=1

∣∣Ψn′(k
′)
〉〈

Ψn′(k
′)
∣∣ X̂ |Ψn(k)〉〈Ψn(k)|

= ∑
k

NF

∑
n′,n=1

〈un′(k+δk) | un(k)〉 · |Ψn′(k+δk)〉〈Ψn(k)| . (9.17)

Spectrum of the projected unitary position operator and the Wilson loop

As in the single-band case, the next step is to consider X̂P raised to the Nth power. This
time, it will not be simply proportional to the projector P̂, however. Bearing in mind
the orthonormality of the energy eigenstates, 〈Ψn(k) |Ψn′(k′)〉= δk′kδn′n, we find(

X̂P
)N

= ∑
k

∑
mn

W (k)
mn |Ψm(k)〉〈Ψn(k)| . (9.18)
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The Wilson loop matrices W (k), as per Eq. (9.4), are all unitary equivalent, and have
the same set of complex eigenvalues,

λn = |λn|eiθn with n = 1, . . . ,NF , (9.19)
|λn| ≤ 1, θn ∈ [−π,π). (9.20)

The spectrum of eigenvalues of X̂P is therefore composed of the Nth roots of these
eigenvalues, for j = 1, . . . ,N, and n = 1, . . . ,NF ,

λn, j = eiθn/N+i jδk+log(|λn|)/N , =⇒ (λn, j)
N = λn. (9.21)

Wannier centers identified through the eigenvalues of the Wilson loop

As in the single-band case, Sect. 3.1, we identify the phases of the eigenvalues λn, j of
the projected position operator X̂P with the centers of the Wannier states. There are NF
sets of Wannier states, each set containing states that are spaced by distances of 1,

〈x〉n, j =
N
2π

Im logλn, j = 〈x〉n + j; (9.22)

〈x〉n =
θn

2π
. (9.23)

The phases θn of the NF eigenvalues of the Wilson loop W are thus identified with the
Wannier centers, more precisely, with the amount by which the NF sets are displaced
from the integer positions.

9.2 Time-reversal restrictions on Wannier centers
We will now apply the prescription for Wannier states above to the one-dimensional
insulators obtained as slices of a two-dimensional T̂ 2 = −1 time-reversal invariant
insulator at constant ky. We will use the language of dimensional reduction, i.e., talk
of the bulk Hamiltonian Ĥ(kx,ky) as describing an adiabatic particle pump with ky
playing the role of time. We will use the Wannier center flow, i.e., the quantities 〈x〉n =
θn(ky)/(2π) to track the motion of the particles in the bulk during a fictitious pump
cycle, ky =−π → π .

Time-reversal symmetry places constrains the Wannier center flow in two ways: it
enforces ky↔−ky symmetry, i.e., θn(ky) = θn′(−ky), and it ensures that for ky = 0 and
for ky = π , the θn are doubly degenerate. In this Section we see how these constraints
arise.

9.2.1 Eigenstates at k and −k are related
A consequence of time-reversal symmetry is that energy eigenstates at k can be trans-
formed to eigenstates at −k. One might think that because of time-reversal symmetry,
energy eigenstates come in time-reversed pairs, i.e., that τ̂Ĥ(−k)∗τ̂† = Ĥ(k) would
automatically ensure that |un(−k)〉 = eiφ(k)τ̂ |un(k)∗〉. However, because of possible
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degeneracies, this is not necessarily the case. The most we can say is that the state
|un(−k)〉 is some linear combination of time-reversed eigenstates,

|un(−k)〉= τ̂

NF

∑
m=1

(Bnm(k) |um(k)〉)∗ =
NF

∑
m=1

Bnm(k)∗τ̂ |um(k)∗〉 . (9.24)

The coefficients Bnm(k) define the unitary sewing matrix. An explicit formula for
its matrix elements is obtained by multiplying the above equation from the left by
〈ua(k)∗| τ̂†, with some a = 1, . . . ,NF . This has the effect on the left- and right-hand
side of Eq. (9.24) of

〈ua(k)∗| τ̂† |un(−k)〉= (〈un(−k)| τ̂ |ua(k)∗〉)∗ ; (9.25)

〈ua(k)∗| τ̂†
NF

∑
m=1

Bnm(k)∗τ̂ |um(k)∗〉= Bna(k)∗, (9.26)

where for the last equation we used the unitarity of τ̂ and the orthonormality of the set
|um(k)〉. Comparing the two lines above (and relabeling a→ m), we obtain

Bnm(k) = 〈un(−k)| τ̂ |um(k)∗〉 . (9.27)

Using this definition it is straightforward to show that the sewing matrix is unitary, and
that Bmn(−k) =−Bnm(k).

9.2.2 Wilson loops at ky and −ky have the same eigenvalues
To see the relation between the Wilson loops at ky and−ky, we first relate the projectors
to the occupied subspace at these momenta. We use a shorthand,

P̂j(ky) =

{
P̂(2π + jδk,ky) if j ≤ 0;
P̂( jδk,ky), if j > 0.

(9.28)

Using Eq. (9.24), and the unitarity of the sewing matrix B, we find

P̂− j(−ky) = P̂(−k) =
NF

∑
n=1
|un(−k)〉〈un(−k)|

=
NF

∑
n=1

NF

∑
m=1

NF

∑
m′=1

Bnm(k)∗τ̂ |um(k)∗〉Bnm′(k)〈um′(k)∗| τ̂†

= τ̂P̂j(ky)
∗
τ

† = τ̂P̂j(ky)
T

τ
†. (9.29)

The consequence of Eq. (9.29) for the Wilson loop is

Ŵ (−ky) = τ̂Ŵ (ky)
T

τ̂
†. (9.30)

We write down the proof explicitly for N = 6,

Ŵ (−ky) = P̂3(−ky)P̂2(−ky)P̂1(−ky)P̂0(−ky)P̂−1(−ky)P̂−2(−ky)P̂3(−ky)

= τ̂P̂3(ky)
T P̂−2(ky)

T P̂−1(ky)
T P̂0(ky)

T P̂1(ky)
T P̂2(ky)

T P̂3(ky)
T

τ̂
†

= τ̂Ŵ (ky)
T

τ̂
†, (9.31)
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the generalization to arbitrary even N follows the same lines. The set of eigenvalues
of Ŵ is the same as that of its tranpose Ŵ T , as this holds for any matrix. Moreover,
the unitary transformation of Ŵ T to τ̂Ŵ T τ̂† does not change the eigenvalues either. To
summarize, we find that the eigenvalues of the Wilson loop at −ky are the same as of
the Wilson loop at ky,

θn(ky) = θn(−ky). (9.32)

From Eq. (9.32), we have that the Wannier center flow is symmetric around ky = 0,
and hence, also symmetric around ky = π . This means that it is enough to examine the
Wannier centers from ky = 0 to ky = π .

9.2.3 Wilson loops at ky = 0 and ky = π are doubly degenerate
We now concentrate on the two special values of the y wavenumber, ky = 0 and kY = π ,
which are mapped unto themselves by time reversal. The one-dimensional Hamiltoni-
ans Ĥbulk(0) and Ĥbulk(π) are time-reversal invariant, and thus, their every eigenstate
must come with its time-reversed partner, obtained by the local time-reversal operation
T̂ . Due to Kramers theorem, an energy eigenstate and its time-reversed partner are
orthogonal, 〈Ψ|T̂ |Ψ〉= 0.

The Wilson loop Ŵ at ky = 0 and ky = π is doubly degenerate. To show this, take
an eigenstate of the Wilson loop, Ŵ |Ψ〉= λ |Ψ〉. Using Eq. (9.31), we find

λ |Ψ〉= Ŵ |Ψ〉= ττ
†Ŵττ

† |Ψ〉= τ̂Ŵ T
τ̂

† |Ψ〉 ; (9.33)

Ŵ †
τ̂ |Ψ∗〉= λ

∗
τ̂ |Ψ∗〉 . (9.34)

We obtained line (9.34) by multiplication from the left by τ̂ and complex conjugation,
and using the antisymmetry of τ̂ . In the final line, we have obtained that the Wilson
loop Ŵ has a left eigenvector with eigenvalue λ ∗. Since this is orthogonal to |Ψ〉,
however, the right eigenvalue λ must be at least twice degenerate.

9.3 Two types of Wannier center flow
We now examine the Wannier center flow, i.e., the functions θn(ky), in time-reversal
invariant two-dimensional insulators with T̂ 2 = −1. Due to the restrictions of ky ↔
−ky symmetry and degeneracy at ky = 0,π , we will find two classes of Wannier center
flow. In the trivial class, the center flow can be adiabatically (i.e., continuously, while
respecting the restrictions) deformed to the trivial case, with θn = 0 for every n and
every ky. The topological class is the set of cases where this is not possible.

To have a concrete example at hand, we examine the Wannier center flow for the
BHZ model of the previous Chapter, Eq. (8.38), in a trivial (a) and in a topological (b)
case, and a third, more general topological (c) model. All three cases are covered by a
modified BHZ Hamiltonian,

Ĥ(k) = ŝ0⊗ [(u+ coskx + cosky)σ̂z + sinkyσ̂y)]+ ŝz⊗ sinkxσ̂x + ŝx⊗Ĉ+

gŝz⊗ σ̂y(coskx + cos7ky−2). (9.35)
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Figure 9.1: Wilson loop examples.

For case (a), we set g = 0, take the sublattice potential parameter u = 2.1, and coupling
operator Ĉ = 0.02σ̂y. This is adiabatically connected to the trivial limit of the BHZ
model at u =+∞. In case (b), we set g = 0, take sublattice potential parameter u = 1,
and coupling operator Ĉ = 0.3σ̂y, deep in the topological regime. In case (c) we add
the extra term to the BHZ model to have a more generic case, with g = 0.1, and use
u = 1, coupling Ĉ = 0.1σ̂y. The Wannier center flows for the three cases are shown in
Fig. 9.1.

We consider what adiabatic deformations of the Hamiltonian can do to the center
flow. Focusing to ky = 0→ π , the center flow consists of branches θn(ky), that are
continuous functions of ky, beginning at θn(0) and ending at θn(π). Due to an adiabatic
deformation,

• A branch can bend while θn(0) and θn(π) are fixed;

• The endpoint at ky = 0 (or ky = π) of a branch can shift: in that case, the endpoint
of the other branch, the Kramers partner at ky = 0 (or ky = π) is shifted with it;

• Branches θn and θm can recombine: a crossing between them at some ky can turn
into an avoided crossing.

Consider the example of Fig. 9.1. Bending of the branches and shifting of the
endpoints can bring case (a) to a trivial case, where all branches are vertical, θn(ky) = 0
for every n and ky. Case (b) can be deformed to case (c). Notice, however, that neither
cases (b) nor (c) can be deformed to the trivial case.

9.3.1 Bulk topological invariant
We define the bulk topological invariant Nbulk, by choosing some fixed θ̃ ∈ [−π,π),
and asking for the parity of the number of times the Wannier center flow crosses this
θ̃ . In formulas,

θ̃ ∈ [−π,π); (9.36)

Nn(θ̃) = Number of solutions ky of θn(ky) = θ̃ ; (9.37)

Nbulk =

(
NF

∑
n=1

Nn(θ̃)

)
mod 2 (independent of θ̃). (9.38)
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The number Nbulk is invariant under adiabatic deformations of the bulk Hamiltonian,
as can be shown by considering the possible changes. Bending of a branch θn can
create or destroy solutions of θn(ky) = θ̃ , but only pairwise. Shifting of the endpoint
can create or destroy single solutions of θn(ky) = θ̃ , but in that case, a single solution
of θm(ky) = θ̃ , is also created/destroyed, where θm is the Kramers partner of θn at the
endpoint. Finally, recombination of branches cannot change the number of crossings.
The number N(θ̃) is also invariant under a shift of θ̃ , as already announced. A shifting
of θ̃ is equivalent to a shifting of the Wannier center flow, whose effects we already
considered above.

The bulk topological invariant is the Z2 invariant of the previous Chapter

The full proof that the bulk invariant Nbulk is the same as the parity D of the number
of edge state pairs, Eq.(8.40), is quite involved[37, 16]. We content ourselves with just
pointing out here that both Nbulk and D represent obstructions to deform the Hamil-
tonian adiabatically to the so-called atomic limit, when the unit cells are completely
disconnected from each other. Clearly, switching of a charge pump requires that there
are no edge states present, and therefore, Nbulk = 0 requires D = 0. To show that the
converse is true is more complicated, and we do not discuss it here.

9.4 The Z2 invariant for systems with inversion symme-
try

For two-dimensional time-reversal invariant insulators with inversion (i.e., parity) sym-
metry, the Z2 topological invariant becomes very straightforward. We state the result
below, and leave the proof as an exercise for the reader.

Definition of inversion symmetry

As introduced in Sect. 3.2, the operation of inversion, Π̂, acts on the bulk momentum-
space Hamiltonian using an operator π̂ , by

Π̂Ĥ(k)Π̂−1 = π̂Ĥ(−k)π̂†. (9.39)

We now require the operator π̂ not only to be independent of the wavenumber k, to be
unitary, Hermitian, but also to commute with time reversal, i.e.,

Π̂
†
Π̂ = 1; Π̂

2 = 1; T̂ Π̂ = Π̂T̂ . (9.40)

At a time-reversal invariant momentum, the Kramers pairs have the same inver-
sion eigenvalue

Consider the time-reversal invariant momenta (TRIM), Γ j. In the BHZ model, these
are (kx,ky) = (0,0),(0,π),(π,0),(π,π). In general there are 2d such momenta in a
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d-dimensional lattice model. Each eigenstate
∣∣u(Γ j)

〉
of the bulk momentum-space

Hamiltonian at these momenta has an orthogonal Kramers pair T̂
∣∣u(Γ j)

〉
,

Ĥ(Γ j)
∣∣u(Γ j)

〉
= E

∣∣u(Γ j)
〉

=⇒ Ĥ(Γ j)T̂
∣∣u(Γ j)

〉
= ET̂

∣∣u(Γ j)
〉
. (9.41)

If Ĥ is inversion symmetric, |u〉 can be chosen to be an eigenstate of π̂ as well, since

π̂Ĥ(Γ j)π̂ = Ĥ(−Γ j) = Ĥ(Γ j). (9.42)

Therefore,

π̂
∣∣u(Γ j)

〉
=±

∣∣u(Γ j)
〉
. (9.43)

The Kramers pair of
∣∣u(Γ j)

〉
has to have the same inversion eigenvalue as

∣∣u(Γ j)
〉
,

π̂T̂
∣∣u(Γ j)

〉
= T̂ π̂

∣∣u(Γ j)
〉
=±T̂

∣∣u(Γ j)
〉
. (9.44)

In a system with both time-reversal and inversion symmetry, we get 2d topological
invariants of the bulk Hamiltonian, one for each time-reversal invariant momentum
Γ j. These are the products of the parity eigenvalues ξm(Γ j) of the occupied Kramers
pairs at Γ j. However, inversion symmetry is usually broken at the edges, and so these
invariants do not give rise to robust edge states.

The product of the inversion eigenvalues of all occupied Kramers pairs at all the
time-reversal invariant momenta Γ j is the same as the Z2 invariant,

(−1)Nbulk = ∏
j

∏
m

ξm(Γ j). (9.45)

We leave the proof of this useful result as an exercise for the reader.

9.4.1 Example: the BHZ model
A concrete example for inversion symmetry is given by the BHZ model of Sec. 8.2,
with no coupling Ĉ = 0. It can be checked directly that this has inversion symmetry,
with

π̂ = ŝ0⊗ σ̂z. (9.46)

To calculate the Z2 invariant of the BHZ model, we take the four time-reversal
invariant momenta, k1,k2,k3,k4, are the combinations of kx,ky with kx = 0,π and ky =
0,π . The Hamiltonian ĤBHZ(kx,ky) at these momenta is proportional to the inversion
operator,

ĤBHZ(k1 = 0,0) = (u+2)π̂; ĤBHZ(k4 = π,π) = (u−2)π̂; (9.47)

ĤBHZ(k2 = 0,π) = uπ̂; ĤBHZ(k3 = π,0) = uπ̂. (9.48)

In these cases the Hamiltonian and the inversion operator obviously have the same
eigenstates. At each TRIM, two of these states form one occupied Kramers pair and



136CHAPTER 9. THE Z2 INVARIANT OF TWO-DIMENSIONAL TOPOLOGICAL INSULATORS

the two others one empty Kramers pair. If u > 2, at all four TRIM, the occupied
Kramers pair is the one with inversion eigenvalue (parity) of −1, and so Eq. (9.45)
gives Nbulk = 0. Likewise, if u < −2, the eigenvalues are all +1, and we again obtain
Nbulk = 0. For 0 < u < 2, we have P eigenvalues −1,−1,+1,−1 at the four TRIM
k1,k2,k3,k4, respectively, whereas if −2 < u < 0, we have −1,+1,+1,+1. In both
cases, Eq. (9.45) gives Nbulk = 1. This indeed is the correct result, that we obtained via
the Chern number earlier.

Problems
Inversion symmetry and interlayer coupling in the BHZ model
Consider the BHZ model with layer coupling Ĉ =Cŝx⊗ σ̂y. This breaks the inversion
symmetry π̂ = ŝ0⊗ σ̂z. Nevertheless, the Wannier centers of the Kramers pairs at ky = 0
and ky = π are stuck to θ = 0 or θ = π , and are only shifted by the extra term ∝ ŝzσ̂y
added to the BHZ model in Eq. (9.35). Can you explain why? (hint: extra inversion
symmetry)

Proof of the formula for the Z2 invariant of an inversion-symmetric topological
insulator
Show, using the results of Sect. 3.2, that the Z2 invariant of a two-dimensional time-
reversal invariant and inversion symmetric insulator can be expressed using Eq. (9.45).



Chapter 10

Electrical conduction of edge
states

*Electrical conduction in clean, impurity-free nanostructures at low temperatures qual-
itatively deviate from the behavior of Ohmic conductors. We demonstrate such devi-
ations using a simple zero-temperature model of a clean and phase-coherent metallic
wire, leading us toward the Landauer-Büttiker description of phase-coherent electrical
conduction. We also discuss how scattering at static impurities affects electrical con-
duction in general. As the main subject of the chapter, we show how the presence of
edge states in two-dimensional topological insulators can have an easily measurable
physical consequence: a nonvanishing, quantized conductance, even in the presence of
disorder.

It is well known that the electrical conduction of ordinary metallic samples at room
temperature shows the following two characteristics. First, there is a linear relation
between the electric current I that flows through the sample and the voltage V that drops
between the two ends of the sample: I/V = G≡ R−1, where G (R) is the conductance
(resistance) of the sample. Second, the conductances Gi of different samples made
of the same metal but with different geometries show the regularity GiLi/Ai = σ for
∀i, where Li is the length of the sample and Ai is the area of its cross section. The
material-specific quantity σ is called the conductivity. Conductors obeying both of
these relations are referred to as Ohmic.

Microscopic theories describing the above behavior (e.g., Drude model, Boltzmann
equation) rely on models involving impurities, lattice vibrations, and electron scattering
within the material. Electrical conduction in clean (impurity-free) nanostructures at
low temperature might therefore qualitatively deviate from the Ohmic case. Here, we
demonstrate such deviations on a simple zero-temperature model of a two-dimensional,
perfectly clean, constant-cross-section metallic wire, depicted in Fig. 10.1a. Then we
describe how scattering at static impurities affects the conduction in general. Finally,
as a central result in the field of topological insulators, we point out that electrical
conduction via the edge states of two-dimensional topological insulators shows a strong
robustness against such impurities.

137
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10.1 Electrical conduction in a clean quantum wire

Figure 10.1: (a) Schematic representation of a clean quantum wire contacted to two
electron reservoirs (contacts). (b) Occupations of electronic states in the contacts and
the quantum wire in the nonequilibrium situation when a finite voltage V is applied
between the left and right reservoirs.

As shown in Fig. 10.1a, take a wire that lies along the x axis and has a finite width
in the y direction. The latter might be defined by an electric confinement potential or
the termination of the crystal lattice. Each electronic energy eigenfunction |l,k〉 in such
a wire is a product of a standing wave along y, labeled by a positive integer l, and a
plane wave propagating along x, labeled by a real wave number k (see Eq. (8.41)). A
typical set of dispersion relations Elk (‘subbands’) for three different l indices is shown
in Fig. 10.1b.

We also make assumptions on the two metallic contacts that serve as source and
drain of electrons. We assume that the electrons in each contact are in thermal equilib-
rium, but the Fermi energies in the contacts differ by µL− µR = |e|V > 0. (Note that
in this chapter, proper physical units are used, hence constants such as the elementary
charge |e|, reduced Planck’s constant h̄, lattice constant a are reinstated.) We consider
the linear conductance, that is, the case of an infinitesimal voltage |e|V → 0. We fur-
ther assume that both contacts absorb every incident electron with unit probability, and
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that the energy distribution of the electrons they emit is the thermal distribution with
the respective Fermi energy.

These assumptions guarantee that the right-moving (left-moving) electronic states
in the wire are occupied according to the thermal distribution of the left (right) contact,
as illustrated in Fig. 10.1b. Now, we work with electron states normalized to the area
of the channel. It is a simple fact that with this normalization convention, a single
occupied state in the lth channel, with wave number k carries an electric current of
−|e|vlk

Nxa , where Nxa is the length of the wire, and vlk =
1
h̄

dElk
dk is the group velocity of the

considered state. Therefore, the current flowing through the wire is

I =−|e| 1
Nxa ∑

lk
vlk [ f (Elk−µL)− f (Elk−µR)] , (10.1)

where f (ε) =
(

exp ε

kBT +1
)−1

is the Fermi-Dirac distribution. Converting the k sum

to an integral via 1
Nxa ∑k · · · 7→

∫ π/a
−π/a

dk
2π

. . . yields

I =−|e|∑
n

∫
π/a

−π/a

dk
2π

1
h̄

dElk

dk
[ f (Elk−µL)− f (Elk−µR)] . (10.2)

The Fermi-Dirac distribution has a sharp edge at zero temperature, implying

I =−|e|
h

M
∫

µL

µR

dE =−|e|
h
(µL−µR)M = M

e2

h
V (10.3)

Note that the first equality in (10.3) holds only if the number of subbands intersected
by µL and µR are the same, which is indeed the case if the voltage V is small enough.
The number of these subbands, also called ‘open channels’, is denoted by the integer
M. From (10.3) it follows that the conductance of the wire is an integer multiple of
e2/h (commonly referred to as ‘quantized conductance’):

G =
e2

h
M. (10.4)

The numerical value of e2/h is approximately 40 µS (microsiemens), which corre-
sponds to a resistance of approximately 26 kΩ. Note the the conductance quantum is
defined as G0 = 2e2/h, i.e., as the conductance of a single open channel with twofold
spin degeneracy.

It is instructive to compare the conduction in our clean quantum wire to the ordi-
nary Ohmic conduction summarized above. According to (10.3), the proportionality
between voltage and current holds for a clean quantum wire as well as for an ordinary
metal. However, the dependence of the conductance on the length of the sample differs
qualitatively in the two cases: in an ordinary metal, a twofold increase in the length of
the wire halves the conductance, whereas the conductance of a clean quantum wire is
insensitive to length variations.

Whether the conductance of the clean quantum wire is sensitive to variations of
the wire width depends on the nature of the transversal modes. Conventional quantum
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wires that are created by a transverse confinement potential have a subband disper-
sion similar to that in Fig. 10.1b. There, the energy separation between the subbands
decreases as the width of the wire is increased, therefore the number of subbands avail-
able for conduction increases. This leads to an increased conductance for an increased
width, similarly to the case of ordinary metals. If, however, we consider a topological
insulator, where the current is carried by states localized to the edges of the wire, the
conductance of the wire will be insensitive to the width of the wire.

10.2 Phase-coherent electrical conduction in the pres-
ence of scatterers

Having calculated the conductance (10.4) of a clean quantum wire, we now describe
how this conductance is changed by the presence of impurities. We analyze the model
shown in Fig. 10.2, where the disordered region, described by a scattering matrix S, is
connected to the two contacts by two identical clean quantum wires, also called ‘leads’
in this context.

Figure 10.2: Simple model of a phase-coherent conductor in the presence of scatter-
ers. The ideal contacts L and R are connected via ideal leads to the disordered region
represented by the scattering matrix S.

First, we consider the case when each lead supports a single open channel. The
current in the lead connecting contact L and the scattering region consists of a con-
tribution from right-moving states arriving from contact L and partially backscattered
with probability R = |r|2, and from left-moving states arriving from contact R and par-
tially transmitted with probability T ′ = |t ′|2:

I =−|e| 1
Nxa ∑

k
vk
[
(1−R(Ek)) fL(Ek)−T ′(Ek) fR(Ek)

]
(10.5)

Converting the k sum to an integral, assuming that the transmission and reflection prob-
abilities are independent of energy in the small energy window between µR and µL, and
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using 1−R = T = T ′, we arrive at

I =−|e|
h

T
∫

µL

µR

dE [ fL(E)− fR(E)] =
e2

h
TV, (10.6)

which implies that the conductance can be expressed through the transmission coeffi-
cient T :

G =
e2

h
T. (10.7)

The result (10.7) can be straightforwardly generalized to the case when the leads
support more than one open channel. The generalized result for the conductance, also
known as the Landauer formula, reads:

G =
e2

h

M

∑
n=1

Tn, (10.8)

where Tn are the transmission eigenvalues of the scattering matrix i.e., the real eigen-
values of the Hermitian matrix tt†, as defined in the preceding chapter.

10.3 Electrical conduction in two-dimensional topolog-
ical insulators

After presenting the Landauer formula as a generic tool to describe electrical conduc-
tion of a phase-coherent metal, we will use it know to characterize the conductances of
various two-dimensional topological insulator samples.

10.3.1 Chern Insulators
In Sect. 6.2, we have seen that an impurity-free straight strip of a topologically non-
trivial Chern Insulator supports edge states. The relation between the Chern num-
ber Q of the Chern Insulator and the numbers of edge states at a single edge at a
given energy E, propagating ‘clockwise’ (N+(E)) and ‘anticlockwise’ (N−(E)), is
Q = N+(E)−N−(E). In addition, in Sect. 6.3 it was shown that any segment of the
edge of a disordered Chern Insulator with Chern number Q and an arbitrary geometry
supports |Q| chiral edge modes. Here we show that existence of these edge modes leads
to experimentally detectable effects in the electrical transport through Chern Insulator
samples.

We consider a transport setup where the Chern Insulator is contacted with two
metallic electrodes, as shown in Fig. 10.3. In this discussion, we rely on the usual
assumptions behind the Landauer formula: phase-coherence of the electrons, good
contact between contacts and sample, and large spatial separation of the two electrodes
ensuring the absence of tunneling contributions to the conductance.

In the following list, we summarize how the phase-coherent electrical conductance
of a Chern Insulator varies with the sample geometry, absence or presence of disorder,
and the value of the electronic Fermi energy.
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Figure 10.3: A disordered sample of Chern insulator, with contacts 1 and 2, that can be
used to pass current through the sample in order to detect edge states.
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1. Disorder-free sample with a strip geometry (see Fig. 10.1a)

(a) Fermi energy lies in a band. In this case, the sample is a clean quantum
wire (see Sect. 10.1) with an integer number of open channels. The cor-
responding transversal wave functions might or might not be localized to
the sample edges, and therefore the number of channels might be different
from any combination of Q, N+ or N−. According to Eq. 10.4, the con-
ductance of such a clean quantum wire is quantized and insensitive to the
length of the sample. Furthermore, the conductance grows in a step-like
fashion if the width of the sample is increased.

(b) Fermi energy lies in the gap. The sample is a clean quantum wire with
open channels that are all localized to the sample edges. The number of
those channels is N+(E)+N−(E), where E is the Fermi energy: in each
of the two possible direction of current flow, there are N+ channels on one
edge and N− on the other edge that contribute to conduction. Conduc-
tance is finite and quantized, a behavior rather unexpected from an insula-
tor. The conduction is not Ohmic, as the conductance is insensitive to both
the length and the width of the sample.

2. Disordered sample with an irregular shape (see Fig. 10.3):

(a) Fermi energy lies in a band. Because of the presence of disorder, the elec-
trical conduction of such a sample might be Ohmic. There are no protected
edge states at the Fermi energy.

(b) Fermi energy lies well within the gap. According to Sect. 6.3, any edge
segment of such a sample supports Q reflectionless chiral edge modes at the
Fermi energy. Therefore, conductance is typically quantized, G = |Q|e2/h,
although, disorder permitting, it might in principle be larger than this value.
The quantized conductance is insensitive to changes in the geometry or the
disorder configuration. This transport property, unexpected for an insulator,
let alone for one with disorder, is a hallmark of Chern Insulators.

In the case of two-dimensional samples there is often an experimental possibility of
tuning the electronic Fermi energy in situ by controlling the voltage applied between
the sample and a nearby metallic plate (gate electrode), as discussed in Sect. 10.4. This
allows, in principle, to observe the changes in the electrical conduction of the sample
as the Fermi energy is tuned across the gap.

10.3.2 Two-dimensional time-reversal invariant topological insula-
tors with T̂ 2 =−1

In the following list, we summarize the predictions of the Landauer formalism for
the conductance of two-dimensional time-reversal invariant topological insulators with
T̂ 2 =−1 (‘D = 1 insulators’ for short).

1. Disorder-free sample with a strip geometry:
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(a) Fermi energy lies in a band. A simple consequence of the Landauer for-
mula is that phase-coherent conductance of an impurity-free D = 1 topo-
logical insulator of the strip geometry shown in Fig. 10.1a is quantized.
The conductance grows if the width of the strip is increased, but insensitive
to change in the length.

(b) Fermi energy lies in the gap. Only edge channels are open in this case.
These also provide conductance quantization. As the number of edge-state
Kramers pair per edge is odd, the conductance might be 2e2/h, 6e2/h,
10e2/h, etc. Conductance is insensitive to width or length changes of the
sample.

2. Disordered sample with an irregular shape and TRS disorder:

(a) Fermi energy lies in a band. The electrical conduction might be Ohmic.

(b) Fermi energy lies in the gap. We have shown in Chapt. 8 that a D = 1
insulator supports one protected edge-state Kramers pair per edge, which
allows for reflectionless electronic transmission if only TRS defects are
present. The Landauer formula (10.8) implies, for typical cases, G = 2e2/h
for such a sample, as one edge state per edge contributes to conduction. The
conductance might also be larger, provided that the number of edge-state
Kramers pairs is larger than 1 and disorder is ineffective in reducing the
transmission of the topologically unprotected pairs.

We note that in real materials with Z2 invariant D = 1, various mechanisms might
lead to backscattering and, in turn, to G < 2e2/h. Examples include TRS-breaking
impurities, TRS impurities that bridge the spatial distance between the edges (see
Chapt. 8), hybridization of edge states from opposite edges in narrow samples, and
inelastic scattering on phonons or spinful impurities.

10.4 An experiment with HgTe quantum wells
Electrical transport measurements [21] on appropriately designed layers of the semi-
conductor material mercury-telluride (HgTe) show signatures of edge-state conduc-
tion in the absence of magnetic field. These measurements are in line with the the-
oretical prediction that a HgTe layer with a carefully chosen thickness can realize a
topologically nontrivial (D = 1) two-dimensional time-reversal invariant insulator with
T̂ 2 = −1. In this section, we outline the main findings of this experiment, as well as
its relation to the BHZ model introduced and discussed in chapter 8.

The experiments are performed on sandwich-like structures formed by a few-nanometer
thick HgTe layer (quantum well) embedded between two similar layers of the alloy
HgxCd1−xTe, as shown in Fig. 10.4. (In the experiment reported in [21], the alloy com-
position x= 0.3 was used.) In this structure, the electronic states with energies close the
Fermi energy are confined to the HgTe layer that is parallel to the x-y plane in Fig. 10.4.
The energy corresponding to the confinement direction z is quantized. The carriers
are free to move along the HgTe layer, i.e., parallel to the x-y plane, therefore two-
dimensional subbands are formed in the HgTe quantum well. Detailed band-structure
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Figure 10.4: Schematic representation of a HgTe quantum well of width d, sandwiched
between two HgxCd1−xTe layers. Electrons are confined to the HgTe layer, and their
Fermi energy can be tuned in situ by adjusting the voltage Vgate of the metallic electrode
on the top of the sample (black). For a more accurate description of the experimental
arrangement, see [20].

calculations of Ref. [5] show that as the the thickness d of the HgTe layer is decreased,
the lowermost conduction subband and the uppermost valence subband touch at a crit-
ical thickness d = dc, and the gap is reopened for even thinner HgTe layers. (For the
alloy composition x = 0.3 used in the experiment, the critical thickness is dc ≈ 6.35
nm.) This behavior is illustrated schematically in Fig. 10.5, which illustrates the elec-
tronic dispersions of the uppermost valence subband and the the lowermost conduction
subband, at the center of the BZ, for three different thicknesses of the quantum well.

Band-structure calculations have also revealed a connection between the subbands
depicted in Fig. 10.5 and the BHZ model introduced and discussed in Chapt. 8. The 4×
4 effective Hamiltonian describing the two spinful two-dimensional subbands around
their extremum point at the centre of the HgTe Brillouin zone resembles the low-energy
continuum Hamiltonian derived from the BHZ lattice model in the vicinity of the u ≈
−2 value. Changing the thickness d of the HgTe layer corresponds to a change in the
parameter u of the BHZ model, and the critical thickness d = dc corresponds to u =−2
and, consequently, a zero mass in the corresponding two-dimensional Dirac equation.

As a consequence of the strong analogy of the band structure of the HgTe quantum
well and that of the BHZ model, it is expected that either for d < dc or for d > dc the
material is a D = 1 insulator with a single Kramers pair of edge states. Arguments
presented in [5] suggest that the thick quantum wells with d > dc are topologically
nontrivial.

Electrical transport measurements were carried out in HgTe quantum wells pat-
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Figure 10.5: Evolution of the two-dimensional band structure of a HgTe quantum well
as a function of its thickness d. (a) For a thin quantum well below the critical thickness
d < dc, the band structure has a gap and the system is a trivial insulator. (b) At a
critical thickness d = dc, the band gap closes and the system is metallic. (c) For a
thick quantum well with d > dc, the band gap reopens and the system becomes a two-
dimensional topological insulator.

terned in the Hall bar geometry shown in Fig. 10.6. The quantity that has been used
in this experiment to reveal edge-state transport is the four-terminal resistance R14,23 =
V23/I14, where V23 is the voltage between contacts 2 and 3, and I14 is the current flow-
ing between contacts 1 and 4. This quantity R14,23 was measured for various devices
with different thicknesses d, below and above the critical thickness dc, of the HgTe
layer, and for different values of the Fermi energy. The latter can be tuned in situ by
controlling the voltage between the HgTe layer and a metallic ‘gate’ electrode on the
top of the layered semiconductor structure, as shown in Fig. 10.4.

Figure 10.6: HgTe quantum well patterned in the Hall-bar geometry (gray area). Num-
bered terminals lead to metallic contacts. Solid and dashed lines depict counterpropa-
gating edge states.

To appreciate the experimental result, let us first derive the four-terminal resistance
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R14,23 for such a device. To this end, we express V23 with I14. Ohm’s law implies
V23 = I23/G23, where I23 is the current flowing through the edge segment between
contacts 2 and 3, whereas G23 is the conductance of that edge segment. Furthermore, as
the current I14 flowing through terminals 1 and 4 is equally divided between the upper
and lower edges, the relation I23 = I14/2 holds, implying the result R14,23 = 1/(2G23).

If the Fermi energy lies in the bands neighboring the gap, then irrespective of the
topological invariant of the system, the HgTe quantum well behaves as a good con-
ductor with G23 � e2/h, implying R14,23 � h/e2. If the Fermi energy is tuned to
the gap in the topologically nontrivial case d > dc, then G23 = e2/h and therefore
R14,23 = h/(2e2). This holds, of course, only at a temperature low enough and a
sample size small enough such that phase coherence is guaranteed. The presence of
static time-reversal invariant defects is included. If the system is topologically trivial
(d < dc), then there is no edge transport, and the quantum well is a good insulator with
R14,23� h/e2.

The findings of the experiments are consistent with the above expectations. Fur-
thermore, the four-terminal resistance of topologically nontrivial HgTe layers with dif-
ferent widths were measured, with the resistance found to be an approximately constant
function of the width W of the Hall bar. This is a further indication that the current in
these samples is carried by edge states.

To wrap up this chapter, we note that InAs/GaSb bilayer quantum wells are an al-
ternative semiconductor material system where two-dimensional topological insulators
can be realized [22, 9]. Graphene is believed to be a two-dimensional topological in-
sulator as well [19], even though its energy gap between the valence and conduction
band, induced by spin-orbit interaction and estimated to be of the order of µeV, seems
to be too small to allow for the detection of edge-state transport even at the lowest
available temperatures. The concept of a time-reversal invariant topological insulator
can be extended to 3D crystals as well, where the role of the edge states is played by
states localized to the two-dimensional surface of the 3D material. The description
of such systems is out of the scope of the present course; the interested reader might
consult, e.g., Refs. [17, 4].
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Buhmann, Laurens W. Molenkamp, Xiao-Liang Xi, and Shou-Cheng Zhang.
Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318(6):766–
770, 2007.

[22] Chaoxing Liu, Taylor L. Hughes, Xiao-Liang Qi, Kang Wang, and Shou-Cheng
Zhang. Quantum spin hall effect in inverted type-ii semiconductors. Phys. Rev.
Lett., 100:236601, Jun 2008.

[23] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Van-
derbilt. Maximally localized wannier functions: Theory and applications. Rev.
Mod. Phys., 84:1419–1475, Oct 2012.

[24] Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang. Topological quantization
of the spin hall effect in two-dimensional paramagnetic semiconductors. Phys.
Rev. B, 74:085308, Aug 2006.

[25] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconduc-
tors. Rev. Mod. Phys., 83:1057–1110, Oct 2011.

[26] Raffaele Resta. Berry Phase in Electronic Wavefunctions. Troisieme Cycle de la
Physique en Suisse Romande, 1996.



BIBLIOGRAPHY 151

[27] Raffaele Resta. Macroscopic polarization from electronic wavefunctions. arXiv
preprint cond-mat/9903216, 1999.

[28] Raffaele Resta. What makes an insulator different from a metal? arXiv preprint
cond-mat/0003014, 2000.

[29] Shinsei Ryu, Andreas P Schnyder, Akira Furusaki, and Andreas WW Ludwig.
Topological insulators and superconductors: tenfold way and dimensional hierar-
chy. New Journal of Physics, 12(6):065010, 2010.

[30] Shun-Qing Shen. Topological insulators: Dirac equation in condensed matter.
Springer Series in Solid-State Sciences, 174, 2012.

[31] Alexey A. Soluyanov and David Vanderbilt. Smooth gauge for topological insu-
lators. Phys. Rev. B, 85:115415, Mar 2012.
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