Ehrenfest's theorem

Ehrenfest's theorem is often stated as $\frac{d}{dt}\langle A\rangle = -i\langle [A,H(t)]\rangle$.

Here, the average $\langle \mathcal{O} \rangle$ corresponds to ...

- a) the arithmetic mean of the diagonal elements of the operator \mathcal{O} .
- b) the expectation value of \mathcal{O} in an arbitrary eigenstate ψ of the Hamiltonian H.
- c) the expectation value of \mathcal{O} in an arbitrary state $\psi(t)$.
- d) something else.

Particle number in a two-site model

Consider the two-site system described by the Hamiltonian $H = v\sigma_x$. The initial state at t = 0 is localized on the left site, $\psi_i(t = 0) = (1, 0)$. How does the particle number $N_R(t)$ on the right site evolve in time?

Current in a two-site model

Consider the two-site system described by the Hamiltonian $H = v\sigma_x$. The initial state at t = 0 is localized on the left site, $\psi_i(t = 0) = (1, 0)$. How does the current into the right site, j_{intoR} , evolve in time?

Current in a two-site model II.

Consider the time-dependent two-site Hamiltonian $H = u(t)\sigma_z + v(t)\sigma_x$. Which of the operators below represents the influx of particles into site R?

a)
$$-v(t)\sigma_x$$

b)
$$-v(t)\sigma_y$$

c)
$$-iv(t)\sigma_y$$

$$d - u(t)\sigma_y$$

$$L \stackrel{v}{\longrightarrow} R$$

Particle influx into a segment of a molecule

Consider the 5-atom molecule shown on the right.

The spatial structure of the nonzero hopping amplitudes is indicated by the graph.

Otherwise, hopping amplitudes and on-site energies are arbitrary.

Denote the current operator describing the influx of electrons into the orange segment as \hat{j}_S . The matrix representation of \hat{j}_S in the real-space basis (shown in the figure) is a 5x5 matrix.

How many nonzero elements does it have?

- a) 3
- b) 6
- c) 8
- d) 10

Adiabatic limit of a quasi-adiabatic pumping cycle

Consider the adiabatic limit of a quasi-adiabatic pumping cycle in a 1D crystal. Which statement is true?

In the adiabatic limit,

- a) the momentum- and time-resolved current through a cross section approaches zero.
- b) the time-resolved current through a cross section approaches zero.
- c) the number of particles pumped through a cross section during the whole cycle approaches zero.
- d) More than one of the above statements is true.

Persistent current I.

Take the filled lower-energy band of a static, insulating one-dimensional, two-band lattice model. Assume a finite number N of unit cells, periodic boundary condition, and real-valued hopping amplitudes.

Then,

- a) the current carried by each occupied Bloch state is zero.
- b) the net current carried by the electrons of the filled band is zero.
- c) the net current carried by the electrons of the filled band is always nonzero.
- d) the net current carried by the electrons of the filled band can be nonzero.

Persistent current II.

Take the filled lower-energy band of a static, insulating one-dimensional, two-band lattice model. Assume a finite number N of unit cells, periodic boundary condition, but now allow for complex-valued hopping amplitudes.

Then,

- a) the current carried by each occupied Bloch state is zero.
- b) the net current carried by the electrons of the filled band is zero.
- c) the net current carried by the electrons of the filled band is always nonzero.
- d) the net current carried by the electrons of the filled band can be nonzero.

Persistent current III.

Take the filled lower-energy band of a static, insulating one-dimensional, two-band lattice model. Assume periodic boundary condition, allow for complex-valued hopping amplitudes, but consider the thermodynamic limit, $N \to \infty$.

Then,

- a) the current carried by each occupied Bloch state is zero.
- b) the net current carried by the electrons of the filled band is zero.
- c) the net current carried by the electrons of the filled band is always nonzero.
- d) the net current carried by the electrons of the filled band can be nonzero.

Parallel-transport time parametrization

Consider a spin aligned with a B-field along z. Adiabatically rotate the B-field 360 degrees in the x-z plane, such that it returns to its original alignment at the end of the cycle:

$$H(t) = \boldsymbol{B}(t) \cdot \boldsymbol{\sigma}$$
, where $\boldsymbol{B}(t) = B(\sin(2\pi t/T), 0, \cos(2\pi t/T))$.

Let us describe the instantaneous ground state of this Hamiltonian with the parallel-transport time parametrization that starts with $\psi(t=0)=(0,1)$.

What is the value of this parametrization in the final point t = T?

a)
$$\psi(T) = (0,1)$$

b)
$$\psi(T) = -(0,1)$$

c)
$$\psi(T) = e^{iBT}(0,1)$$

d)
$$\psi(T) = -e^{iBT}(0,1)$$

