Chapter 7

Continuum model of localized states at a domain wall

2017. 10. 10

Earlier: 1D SSH model bulk / half-infinite / finite / domain wall zero-energy states

Now: lattice => continuum matrix Hamiltonian => differential operator Hamiltonian
Recipe to derive the continuum model

example:
SSH model,
inhomogeneous
intracell hopping
Recipe to derive the continuum model

1) take bulk momentum-space hamiltonian

\[H(k) = d_x(k)\hat{\sigma}_x + d_y(k)\hat{\sigma}_y + d_z(k)\hat{\sigma}_z \]

\[d_x(k) = v + w\cos k; \quad d_y(k) = w\sin k; \quad d_z(k) = 0. \]

2) identify metallic band crossing \((k0 = \pi)\)

3) assume nearly metallic condition \(|v(x) - w| \ll v(x) + w \)

\[M = v - w \]

4) expand \(H \) in \(q = k - k0 \)

5) insert spatial dependence of parameters & replace \(q \) with momentum operator \(p \)

\[H_{\text{EFA}} = M(x)\hat{\sigma}_x - w\hat{p}\hat{\sigma}_y. \]
Continuum model describes zero-energy bound state

setup: `mass domain wall' in the 1D SSH model / 1D massive Dirac equation
Continuum model is good

useful: lattice \iff numerics; continuum \iff analytics & numerics

examples:
- zero- and finite-energy bound states
- electron scattering and electric transport

interesting: Dirac equation \Rightarrow connection to relativistic physics
Continuum model is limited

limited to the nearly metallic case
(e.g., does not capture the fully dimerized limit of the SSH model)

limited to a finite range in momentum and energy
(`low-energy continuum model’)
Continuum model works in two dimensions as well

setup: `mass domain wall` in the 2D QWZ model / 2D massive Dirac equation

\(\hat{H}(k) = \sin k_x \hat{\sigma}_x + \sin k_y \hat{\sigma}_y + [u + \cos k_x + \cos k_y] \hat{\sigma}_z. \)

\(u < -2 \quad : \quad Q = 0; \)
\(-2 < u < 0 \quad : \quad Q = -1; \)

\(\hat{H}_{EFA} = M(x, y) \hat{\sigma}_z + \hat{p}_x \hat{\sigma}_x + \hat{p}_y \hat{\sigma}_y. \)

\(M = u + 2. \)