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Fig. 1.8 A long, fully dimerized SSH chain with 3 domains. The boundaries between the domains,
the “domain walls”, host zero energy eigenstates (yellow shading). These can be localized on a
single site, as for the domain wall at n = 3, or on a superposition of sites, as the odd superposition
of the ends of the trimer shared between the n = 6 and n = 7 unit cells. .

superposition of the two end sites form a zero energy eigenstate. In the the example
of Fig. 1.8, this is

Ĥ(|6,Bi� |7,Bi) = 0. (1.41)

Note that, just as the edge states at the ends of the chain, these zero energy states at
the interfaces have wavefunctions that take nonzero values on one sublattice only.

From a perfect dimerized phase without domains it is only possible to germinate
an even number of interfaces. This means that if one encounters a domain wall with
a localized state on one sublattice then there will be another domain wall somewhere
in the system – possibly at the system’s edge – with a localized state on the opposite
sublattice.

Consider a domain wall in an SSH system that is not in the fully dimerized limit.
The wavefunctions of the edge states at the domain walls will penetrate to some
small depth into the bulk, with exponentially decaying evanescent tails. For two
domain walls at a distance of M unit cells, the two edge states on the walls will
hybridize, form “bonding” and “anti-bonding” states. At half filling, of these only
the negative energy eigenstate will be occupied. This state hosts a single electron,
however, its wavefunction is localized with equal weight on the two domain walls.
Hence each domain wall, when well separated from other domain walls and the ends
of the chain, will carry half an electronic charge. This effect is sometimes referred
to as “fractionalization” of the charge.

1.5.2 Exact calculation of edge states

The zero energy edge states of the SSH model can also be calculated exactly, even
in the absence of translational invariance. Take an SSH model on N unit cells, with
complex intracell and intercell hopping amplitudes,

Ĥ =
N

Â
m=1

�
vm |m,Bihm,A|+h.c.

�
+

N�1

Â
m=1

�
wm |m+1,Aihm,B|+h.c.

�
. (1.42)

We are looking for a zero energy eigenstate of this Hamiltonian,

1D SSH model
bulk / half-infinite / finite / domain wall
zero-energy states

Now: lattice => continuum

matrix Hamiltonian => differential operator Hamiltonian



Recipe to derive the continuum model
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Fig. 7.2 Inhomogeneous intracell hopping and domain walls in the SSH model. The dashed el-
lipse denotes the unit cell. The dashed line connecting the edges of the chain denotes the periodic
boundary condition.

7.2.1 The metallic case

First, consider the metallic homogeneous SSH model, where v = w. The dispersion
relation is shown as the blue solid line in Fig. 1.2c. The filled and empty bands
touch at the end of the BZ, at k = k0 ⌘ p . Figure 1.2c shows that in the vicin-
ity of that touching point, commonly referred to as a Dirac point, the dispersion
relations are linear functions of the relative wave vector q = k � k0. The slope of
these linear functions, corresponding to the group velocity of the electrons, can
be determined, e.g. by Taylor-expanding the bulk momentum-space Hamiltonian
Ĥ(k) = (v+wcosk)ŝx +wsinkŝy, see Eq. (1.10), to first order in q:

Ĥ(k0 +q)⇡�wqŝy, (v = w). (7.28)

which indeed has a linear dispersion relation,

E±(q) =±wq. (7.29)

The eigenstates of the linearized Hamiltonian (7.28) are

y±(q) =
1p
2

✓
1
⌥i

◆
. (7.30)

Note that the dispersion relation of the Dirac equation of fermions with zero mass
is

E±(k) =±h̄kc, (7.31)

where h̄ is the reduced Planck’s constant and c is the speed of light. Comparing
Eqs. (7.29) and (7.31), we conclude that the dispersion of the metallic SSH model
is analogous to that of massless Dirac fermions, and the hopping amplitude of the
metallic SSH model plays the role of h̄c. Because of the similarity of the dispersions
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1.2.2 Information beyond the dispersion relation

Although the dispersion relation is useful to read off a number of physical properties
of the bulk of the system (e.g., group velocities), there is also important information
about the bulk that it does not reveal. Stationary states do not only have an energy
and wavenumber eigenvalue, but also an internal structure, represented by the com-
ponents of the corresponding vector |un(k)i 2 Hinternal. We now define a compact
representation of this information for the SSH model.

The bulk momentum-space Hamiltonian Ĥ(k) of any two-band model (i.e., a
model with 2 internal states per unit cell), reads

H(k) = dx(k)ŝx +dy(k)ŝy +dz(k)ŝz = d0(k)ŝ0 +d(k)ŝ . (1.17)

For the SSH model, d0(k) = 0, and the real numbers dx,y,z 2 R, the components of
the k-dependent 3-dimensional vector d(k), read

dx(k) = v+wcosk; dy(k) = wsink; dz(k) = 0. (1.18)

The internal structure of the eigenstates with momentum k is given by the direction
in which the vector d(k) of Eq. (1.18) points (the energy is given by the magnitude
of d(k); for details see Sect. 2.5).

As the wavenumber runs through the Brillouin zone, k = 0 ! 2p , the path that
the endpoint of the vector d(k) traces out is a closed circle of radius w on the dx,dy
plane, centered at (v,0). For more general 2-band insulators, this path need not be a
circle, but it needs to be a closed loop due to the periodicity of the bulk momentum-
space Hamiltonian, Eq. (1.12), and it needs to avoid the origin, to describe an insu-
lator. The topology of this loop can be characterized by an integer, the bulk winding
number n . This counts the number of times the loop winds aroung the origin of the
dx,dy plane. For example, in Fig. 1.2(f),(g), we have n = 0, in Fig. 1.2(i),(j), we
have n = 1, while in Fig. 1.2(h), the winding number n is undefined.

1.3 Edge states

Like any material, the SSH Hamiltonian does not only have a bulk part, but also
boundaries (which we refer to as ends or edges). The distinction between bulk and
edge is not sharply defined, it describes the behaviour of energy eigenstates in the
thermodynamic limit. In the case we consider in these lecture notes, the bulk is trans-
lation invariant, and then the we can distinguish edge states and bulk states by their
localized/delocalized behaviour in the thermodynamic limit. We will begin with the
fully dimerized limits, where the edge regions can be unambiguously defined. We
then move away from these limits, and use a practical definition of edge states.
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the intra-cell hopping amplitude v varies in space while the inter-cell one is constant,
as shown in Fig. 7.2.

In what follows, we will focus on one of the two domain walls shown in Fig. 7.2.
The inhomogeneous Hamiltonian has the form

Hi =
N

Â
m=1

vm (|m,Bihm,A|+h.c.)+w
N

Â
m=1

(|m,Bihm+1,A|+h.c.) , (7.36)

where vm = v(x = m) and v(x) � 0 is a continuously varying function of position,
which takes the constant value v� (v+) far on the left (right) from the domain wall.

We also assume that the local Hamiltonian is a nearly metallic SSH Hamiltonian
everywhere in space. That is, |v(x)�w|⌧ v(x)+w. This ensures that the local band
gaps |v±�w| on the two sides of the domain wall are much smaller than the local
band widths v±+w.

Based on our experience with the EFA in the inhomogeneous one-dimensional
monatomic chain (see Sect. 7.1), now we construct the EFA proposition corre-
sponding to this inhomogeneous, nearly metallic SSH model. Recall that in the
former case, we obtained the EFA Hamiltonian by (i) Taylor-expanding the bulk
momentum-space Hamiltonian around the wave vector corresponding to the band
extremum (that was k0 = 0 in Sect. 7.1), (ii) replacing the relative wave vector q
with the momentum operator p̂ = �i∂x, and (iii) incorporating the inhomogeneity
of the respective parameter, which was the on-site potential V (x) in that case. The
same procedure, applied now for the SSH model with a first-order Taylor expansion,
yields the following EFA Hamiltonian:

HEFA = M(x)ŝx �wp̂ŝy. (7.37)

The EFA proposition is then formulated as follows. Assume that j(x)= (jA(x),jB(x))
is a spatially slowly varying eigenfunction of HEFA in Eq. (7.37), with eigenvalue E.
Then, the state |

y

i defined on the lattice via

|
y

i=
N

Â
m=1

Â
a=A,B

j

a

(m)eik0m |m,ai (7.38)

is approximately an eigenstate of the lattice Hamiltonian Hi with energy E.
Note that, in analogy with Eq. (7.14), the lattice state |

y

i can be reformulated
as a wave packet formed by those eigenfunctions of the homogeneous (v(x) = w)
system that are in the vicinity of the band-edge momentum k0:

|
y

i ⇡
0

Â
q

Â
a=A,B

j̃

a

(q) |k0 +qi⌦ |
a

i . (7.39)
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(7.29) and (7.31), the linearized Hamiltonian (7.28) is often called a massless Dirac
Hamiltonian.

At this point, the linearization of the bulk momentum-space Hamiltonian of the
SSH model does not seem to be a particularly fruitful simplification: to obtain the
dispersion relation and the eigenstates, a 2⇥2 matrix has to be diagonalized, no mat-
ter if the linearization has been done or not. However, linearizing the Hamiltonian
is the first step towards the EFA, as discussed below.

7.2.2 The nearly metallic case

Now consider a homogeneous, insulating SSH model that is nearly metallic; that
is, the scale of the energy gap |v�w| opened at k0 is significantly smaller than the
scale of the band width v+w. An example is are shown in 1.2b, where the dispersion
relation is plotted for the parameter values v = 1 and w = 0.6.

We wish to describe the states close to the band gap located around zero energy.
Hence, again, we can use the approximate bulk momentum-space Hamiltonian ob-
tained via linearization in the relative momentum q:

Ĥ(k0 +q)⇡ Mŝx �wqŝy, (7.32)

where we defined M = v�w. The dispersion relation reads

E±(q) =±
p

M2 +w2q2. (7.33)

The (unnormalized) eigenstates of the linearized Hamiltonian (7.32) have the form

y±(q) =
✓

M+ iwq
E±(q)

◆
. (7.34)

Note that the dispersion relation of the Dirac equation for fermions with finite
mass µ 6= 0 reads

E±(k) =±
q

µ

2c4 + h̄2k2c2. (7.35)

Therefore, the parameter M = v�w of the SSH model plays the role of the mass-
related term µc2 of the relativistic dispersion relation (7.35), and the linearized
Hamiltonian (7.32) is often called a massive Dirac Hamiltonian.

7.2.3 Continuum description of the nearly metallic case

We are mostly interested in a continuum description of the zero-energy localized
states formed at a domain wall between two topologically distinct regions. For sim-
plicity and concreteness, consider the case when the domain wall is created so that
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1.2 Bulk Hamiltonian 5

1.2.1 The hopping is staggered to open a gap

The dispersion relation of the bulk can be read off from Eq. (1.14), using the fact
that Ĥ(k)2 = E(k)2Î2. This gives us

E(k) =
���v+ e�ikw

���=p
v2 +w2 +2vwcosk. (1.15)

We show this dispersion relation for five choices of the parameters in Fig. 1.2.

Fig. 1.2 Dispersion relations of the SSH model, Eq. (1.15), for five settings of the hopping ampli-
tudes: (a): v = 1,w = 0; (b): v = 1,w = 0.6; (c): v = w = 1; (d): v = 0.6,w = 1; (e): v = 0,w = 1.
In each case, the path of the endpoints of the vector d(k) representing the bulk momentum-space
Hamiltonian, Eqs. (1.17) and (1.18), are also shown on the dx,dy plane, as the wavenumber is
sweeped across the Brillouin zone, k = 0 ! 2p . .

As long as the hopping amplitudes are staggered, v 6= w, (Figs. 1.2 (a),(b),(d),(e),
there is an energy gap of 2D separating the lower, filled band, from the upper, empty
band, with

D = minkE(k) = |v�w| . (1.16)

Without the staggering, i.e., if v = w, (Fig. 1.2 (c), the SSH model describes a con-
ductor. In that case there are plane wave eigenstates of the bulk available with arbi-
trarily small energy, which can transport electrons from one end of the chain to the
other.

The staggering of the hopping amplitudes occurs naturally in many solid state
systems, e.g., polyacetylene, by what is known as the Peierls instability. A detailed
analysis of this process neccesitates a model where the positions of the atoms are
also dynamical[32]. Nevertheless, we can understand this process intuitively just
from the effects of a slight staggering on the dispersion relation. As the gap due
to the staggering of the hopping amplitudes opens, the energy of occupied states is
lowered, while unoccupied states move to higher energies. Thus, the staggering is
energetically favourable.
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7.2.4 Localized states at a domain wall

Having the envelope-function Schrödinger equation

[M(x)ŝx �wp̂ŝy]j(x) = Ej(x) (7.40)

at hand, we can study the domain wall between the two topologically distinct re-
gions. First, we consider a step-type domain wall, defined via

M(x) =
⇢

M0 if x > 0,
�M0 if x < 0 , (7.41)

and M0 > 0, as shown in Fig. 7.3a.

Fig. 7.3 (a) Step-like and (b) irregular spatial dependence of the mass parameter M(x) of the
one-dimensional Dirac equation.

We wish to use the EFA Schrödinger equation (7.40) to establish the zero-energy
states localized to the domain wall, which were revealed earlier in the lattice SSH
model. That is, we look for evanescent solutions of Eq. (7.40) on both sides of the
domain wall, and try to match them at the interface x = 0. For the x > 0 region, our
evanescent-wave Ansatz reads

jx>0(x) =

 
a

b

!
e�kx (7.42)

with k > 0. Substituting this to Eq. (7.40) yields a quadratic characteristic equation
for the energy E, having two solutions

E± =±
q

M2
0 �w2

k

2. (7.43)

The corresponding unnormalized spinors read

Continuum model describes zero-energy bound state

setup: `mass domain wall’ in the 1D SSH model / 1D massive Dirac equation

zero-energy 
bound state
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limited to the nearly metallic case 
(e.g., does not capture the fully dimerized limit of the SSH model) 

!
limited to a finite range in momentum and energy 

(`low-energy continuum model’)
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Fig. 7.4 Chiral state obtained from the two-dimensional Dirac equation. (a) Dispersion relation
and (b) squared wave function of a chiral state confined to, and propagating along, a mass domain
wall.

Edge states at similar mass domain walls at u(y)⇡ 0 and u(y)⇡ 2 can be derived
analogously. Note that at u(y)⇡ 0, the low-energy states can reside in two different
Dirac valleys, around k0 = (0,p) or k0 = (p,0), and there is one edge state in each
valley. The number of edge states obtained in the continuum model, as well as their
directions of propagation, are in correspondence with those obtained in the lattice
model; as we have seen for the latter case, the number and direction are given by
the magnitude and the sign of Chern-number difference across the domain wall,
respectively.

An interesting fact is that the existence of the edge state is not constrained to
case of a sharp, step-like domain wall described above. Moreover, the simple disper-
sion relation and spinor structure found above generalize for more irregular domain
walls. This generalization is proven in a similar fashion as in the case of the SSH
model, see Sect. 7.2.4. To see this, consider an almost arbitrary one-dimensional
spatial dependence of the mass, similar to the one in Fig. 7.3b: M(x,y) = M(y) with
the only condition that M changes sign between the half-planes y < 0 and y > 0, i.e.,
M(y ! �•) < 0 and M(y ! •) > 0. We claim that there exists a solution of the
corresponding two-dimensional Dirac equation that propagates along the domain
wall, has the dispersion relation E =�qx, is confined in the direction perpendicular
to the domain wall, and has the wave function

j(x,y) =
✓

1
�1

◆
eiqxx f (y). (7.74)

To prove this proposition, insert this wave function j(x,y) to the two-dimensional
Dirac equation and substitute E with �qx therein. This procedure results in two
equivalent equations that are fulfilled if ∂y f (y) = �M(y) f (y), implying that Eq.
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Ĥ(k0 +q)⇡ Mŝz +qxŝx +qyŝy, (7.55)

where we defined the parameter M = u+2. The dispersion relation reads

E±(q) =±
p

M2 +q2. (7.56)

A comparison with the relativistic dispersion relation (7.35) reveals that the param-
eter M of the QWZ model plays the role of µc2; hence M can be called the mass
parameter.

7.3.3 Continuum description of the nearly metallic case

We have discussed that the QWZ lattice with an inhomogeneous u parameter might
support topologically protected states at boundaries separating locally homogeneous
regions with different Chern numbers. Similarly to the one-dimensional SSH model
treated above, these localized states can be described analytically, using the envelope
function approximation (EFA), also in the two-dimensional QWZ model. In the rest
of this Chapter, we focus on the nearly metallic case where the inhomogeneous
u(x,y) is in the vicinity of �2 (i.e., |M(x,y)| = |u(x,y) + 2| ⌧ 1), in which case
the the low-energy excitations are expected to localize in Fourier space around the
band extremum point k0 = (0,0) (see Figs. 6.1a and d). Here we obtain the EFA
Schrödinger-type equation, which resembles the two-dimensional Dirac equation,
and in the next subsection we provide its localized solutions for simple domain-wall
arrangements.

The considered lattice is inhomogeneous due to the spatial dependence of the
parameter u(x,y). In the tight-binding lattice model, we denote the value of u in unit
cell m = (mx,my) as um = u(x = mx,y = my), and correspondingly, we introduce
the local mass parameter via M(x,y) = u(x,y)+2 and Mm = M(x = mx,y = my).

The EFA Hamiltonian can be constructed the same way as in sections 7.1
and 7.2.3. The bulk momentum-space Hamiltonian H(k0 +q) is Taylor-expanded
around the band-edge wave vector k0 = (0,0), the wave-number components qx and
qy are replaced by the differential operators p̂x and p̂y, respectively, and the inho-
mogeneous mass parameter M(x,y) is incorporated. This yields the following result
in our present case:

ĤEFA = M(x,y)ŝz + p̂xŝx + p̂yŝy. (7.57)

Then, the familiar EFA proposition is as follows. Assume that the two-component
envelope function j(x,y) is a spatially slowly varying solution of the EFA Schrödinger
equation

ĤEFAj(x,y) = Ej(x,y). (7.58)

Then, the lattice state |
y

i associated to the envelope function j(x,y) is defined as

|
y

i= Â
m,a

j

a

(m) |m,ai . (7.59)
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Fig. 6.1 The bulk dispersion relation of the QWZ model, for various values of u, as indicated
in the plots. In (a)-(c), the gapless cases are shown, where the bulk gap closes at so-called Dirac
points. In (d), a generic value u =�1.8, the system is insulating.

u <�2 : Q = 0; (6.5a)
�2 < u < 0 : Q =�1; (6.5b)

0 < u < 2 : Q =+1; (6.5c)
2 < u : Q = 0. (6.5d)

6.1.3 The real-space Hamiltonian

We obtain the full Hamiltonian of the Qi-Wu-Zhang model by inverse Fourier trans-
form of the bulk momentum-space Hamiltonian, Eq. (6.1), as
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for the quantum spin Hall effect (Chapt. 8), and thus it is also sometimes called “half
BHZ”.

6.1 Dimensional extension: from an adiabatic pump to a Chern
insulator

We want to construct a two-dimensional lattice Hamiltonian Ĥ with a nonvanishing
bulk Chern number. We will do this by first constructing the bulk momentum-space
Hamiltonian Ĥ(kx,ky), from which the real-space Hamiltonian can be obtained by
Fourier transformation. For the construction we simply take an adiabatic pump se-
quence on a one-dimensional insulator, Ĥ(k, t), and reinterpret the cyclic time vari-
able t as a new momentum variable ky. This way of gaining an extra dimension by
promotion of a cyclic parameter in a continuous ensemble to a momentum is known
as dimensional extension. This, and the reverse process of dimensional reduction,
are key tools to construct the general classification of topological insulators[29].

From the Rice-Mele model to the Qi-Wu-Zhang model

To see how the construction of a Chern insulator works, we take the example of
the smooth pump sequence on the Rice-Mele model from the previous Chapter,
Eqs. (4.7). In addition to the promotion of time to an extra wavenumber, W t ! ky,
we also do an extra unitary rotation in the internal Hilbert space, to arrive at the
Qi-Wu-Zhang model,

Ĥ(k) = sinkxŝx + sinkyŝy +[u+ coskx + cosky]ŝz. (6.1)

The mapping is summarized in Table 6.1.

Adiabatic pump in the RM model QWZ model (Chern Insulator)
average intracell hopping v staggered onsite potential u

wavenumber k wavenumber kx
time t [in units of T/(2p)] wavenumber ky

sx,sy,sz sy,sz,sx

Table 6.1 Mapping of an adiabatic pump sequence of the Rice-Mele model, Ĥ(k, t) to the QWZ
model for the Anomalous Hall Effect, Ĥ(kx,ky).

The corresponding d(k) vector reads,

d(kx,ky) =

0@ sinkx
sinky

u+ coskx + cosky

1A . (6.2)
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Fig. 6.1 The bulk dispersion relation of the QWZ model, for various values of u, as indicated
in the plots. In (a)-(c), the gapless cases are shown, where the bulk gap closes at so-called Dirac
points. In (d), a generic value u =�1.8, the system is insulating.

u <�2 : Q = 0; (6.5a)
�2 < u < 0 : Q =�1; (6.5b)

0 < u < 2 : Q =+1; (6.5c)
2 < u : Q = 0. (6.5d)

6.1.3 The real-space Hamiltonian

We obtain the full Hamiltonian of the Qi-Wu-Zhang model by inverse Fourier trans-
form of the bulk momentum-space Hamiltonian, Eq. (6.1), as

106 7 Continuum model of localized states at a domain wall

Ĥ(k0 +q)⇡ Mŝz +qxŝx +qyŝy, (7.55)

where we defined the parameter M = u+2. The dispersion relation reads

E±(q) =±
p

M2 +q2. (7.56)

A comparison with the relativistic dispersion relation (7.35) reveals that the param-
eter M of the QWZ model plays the role of µc2; hence M can be called the mass
parameter.

7.3.3 Continuum description of the nearly metallic case

We have discussed that the QWZ lattice with an inhomogeneous u parameter might
support topologically protected states at boundaries separating locally homogeneous
regions with different Chern numbers. Similarly to the one-dimensional SSH model
treated above, these localized states can be described analytically, using the envelope
function approximation (EFA), also in the two-dimensional QWZ model. In the rest
of this Chapter, we focus on the nearly metallic case where the inhomogeneous
u(x,y) is in the vicinity of �2 (i.e., |M(x,y)| = |u(x,y) + 2| ⌧ 1), in which case
the the low-energy excitations are expected to localize in Fourier space around the
band extremum point k0 = (0,0) (see Figs. 6.1a and d). Here we obtain the EFA
Schrödinger-type equation, which resembles the two-dimensional Dirac equation,
and in the next subsection we provide its localized solutions for simple domain-wall
arrangements.

The considered lattice is inhomogeneous due to the spatial dependence of the
parameter u(x,y). In the tight-binding lattice model, we denote the value of u in unit
cell m = (mx,my) as um = u(x = mx,y = my), and correspondingly, we introduce
the local mass parameter via M(x,y) = u(x,y)+2 and Mm = M(x = mx,y = my).

The EFA Hamiltonian can be constructed the same way as in sections 7.1
and 7.2.3. The bulk momentum-space Hamiltonian H(k0 +q) is Taylor-expanded
around the band-edge wave vector k0 = (0,0), the wave-number components qx and
qy are replaced by the differential operators p̂x and p̂y, respectively, and the inho-
mogeneous mass parameter M(x,y) is incorporated. This yields the following result
in our present case:

ĤEFA = M(x,y)ŝz + p̂xŝx + p̂yŝy. (7.57)

Then, the familiar EFA proposition is as follows. Assume that the two-component
envelope function j(x,y) is a spatially slowly varying solution of the EFA Schrödinger
equation

ĤEFAj(x,y) = Ej(x,y). (7.58)

Then, the lattice state |
y

i associated to the envelope function j(x,y) is defined as

|
y

i= Â
m,a

j

a

(m) |m,ai . (7.59)


