6. Chern Insulators: The Qi-Wu-Zhang Model

Most important chapter: heart of topological insulators.

• Required: Thouless pumping
• New theory tool: Promoting time $t \rightarrow$ quasimomentum k
• Main results: Edge states in two-dimensional systems
 Bulk Chern number predicts edge states
 Topological protection

• Toy model: Qi-Wu-Zhang (obtained from Thouless pump
 in Rice-Mele by promoting $t \rightarrow k$
Reminder 1: Thouless pump sequence, Rice-Mele

Pump charge along a dimerized chain using sublattice potential:

\[\hat{H}(k,t) = d(k,t)\hat{\sigma} = (v(t) + w(t)\cos k)\hat{\sigma}_x + w(t)\sin k\hat{\sigma}_y + u(t)\hat{\sigma}_z \]

\[u(t) = \sin \Omega t; \]
\[v(t) = \bar{v} + \cos \Omega t; \]
\[w(t) = 1, \]

Graph showing the amplitudes of \(u, v, w \) over time, with \(d_z, d_y, d_x \) arrows indicating the direction of the sublattice potential.
Reminder 2: Topologically Protected Edge States in Thouless pump

Topologically protected = robust:
1) Time - Periodic drive
2) No long range hopping

1→ spectrum time-periodic
2→ spectrum continuous
2→ bulk gap separates two edges
→ no direct coupling,
→ crossing, not anticrossing
Reminder 3: Thouless pump in the bulk in d-space:
times origin in torus = # charge pumped = Chern

control freak sequence:

smooth sequence:
Reminder 4: Net number of charge pumped up in energy at an edge is protected against continuous deformations.
New material, class 6:
From Thouless pump to Chern insulator
Promote time $t \rightarrow$ wavenumber k

1D time-periodic Rice-Mele \rightarrow 2D Qi-Wu-Zhang

$$\hat{H}_{RM}(k, t) = \sin k \hat{\sigma}_y + \sin \Omega t \hat{\sigma}_z + (\bar{v} + \cos \Omega t + \cos k) \hat{\sigma}_x$$

$$\Omega t \rightarrow k_y$$

$k \rightarrow k_x$

$\hat{\sigma}_y \rightarrow \hat{\sigma}_x$

$\hat{\sigma}_z \rightarrow \hat{\sigma}_y$

$\hat{\sigma}_x \rightarrow \hat{\sigma}_z$

$\bar{v} \rightarrow u$

$$\hat{H}_{QWZ}(k_x, k_y) = \sin k_x \hat{\sigma}_x + \sin k_y \hat{\sigma}_y + (u + \cos k_x + \cos k_y) \hat{\sigma}_z$$

2D square lattice, nearest-neighbor spin-dependent hopping
Edge states rising/falling in Thouless pump → unidirectional edge modes in Chern insulators

Topologically protected = robust:
- No long range hopping

→ spectrum periodic & smooth
→ bulk gap separates two edges → no direct coupling → crossing, not anticrossing
Presence, net # of edge state modes seen in bulk: # times origin in torus = # edge state modes = Chern #
Net number of clockwise-propagating edge state modes in the gap is protected against continuous deformations.
Net edge states at some section of edge \rightarrow edge states all around (unitarity \rightarrow particles cannot accumulate)

Topologically protected = robust against:

- Arbitrary disorder on edges
- Some disorder in bulk
 (interesting variation on Anderson localization)
Summary: Chern Insulators have robust edge states predicted by bulk Chern #

- **Required:** Thouless pumping (ensure edge states, Chern #)
- **Theory tool:** Promote \(t \rightarrow \text{quasimomentum } k \)
- **Main results:**
 - Edge states in two-dimensional systems
 - Bulk Chern number predicts edge states
 - Topological protection due to no backscattering
 - Robust against disorder (large edge, small bulk)
- **Toy model:** Qi-Wu-Zhang (from Thouless pump Rice-Mele)
 - Tune Chern number by onsite magnetic field \(u \) (-2, 0, 2)

\[
\hat{H}_{QWZ}(k_x, k_y) = \sin k_x \hat{\sigma}_x + \sin k_y \hat{\sigma}_y + (u + \cos k_x + \cos k_y)\hat{\sigma}_z
\]