BdG recap

generic meanfield SC Hamiltonian in real space rewritten in with the BdG trick
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Where we introduced the (Nambu) spinor ( CQT ) built from creation and annihilation operators. Remember that hermiticity

of H requires h = hf and A = —AT. The m eigenvalues of the BAG matrix give the excitation spectrum.
Hpic¥n = Entpn (3)
The BdG trick forces PHS on Hpq¢ this is not a physical it is built in the formalism. PHS is represented
P =0.Kr (4)

where o, is the appropriate Pauli matrix in Nambu space and the operator g is complex conjugation in real space. The effect
of PHS is

_ h A h* A* —h —-A
PHBdGP ! :Ux]CR< _A* R )]CRCTIZJ:C< A _h >0’m: ( A* B* >:_HBdG (5)

Kitaev wire

the simplest superconducting model for spinless fermions
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here © means the reversal of all operator sequences. Let us cast this in the BAG form
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with a slightly different definition for C, namely take CT = ( ci c1 cg ca cg c3 ) that is group operators acting on the
same site together. With this choice
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PHS in this case is given by
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where o, acts on the local Nambu spinor f, = ( ?:f > and KC is just a complex conjugation, as one would expect it from a
i
complex conjugation in real space. Note that
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here we make use of
O30yOy = —0y, 020,04 = —0,, Ko,K = —0y (13)

thus we have as we expected
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let us now consider an infinite chain! It is natural to rewrite the Hamiltonian of the system with the above defined U and T
matrices and the local Nambu spinor operators
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Hy = %Z (fz]:Ufp + FIT fpr1 + f;HTTfp) + const (16)
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This system has translational invariance and hence we cast it in terms of planewaves.
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where we made use of Zp el(k=k)p — Ok k. Fun fact
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in k space the momentum of the holes is reversed! Consider the effect of complex conjugation in real space on the momentum
space BAG matrix

KrHpac(k)Kr = (U* e 4 (T1)" eik> (22)
= (U+Te* + (TH) ™) = Hp e (—k) (23)
that is real space conjugation flips k as well. Considering now the effect PHS we have
PHpac(k)P~! = (-U —Te * — TTe*) = ~Hpyc (k) (24)
note that it is a common practice in literature to give the operator representing PHS in momentum space as
P =o0,K (25)
here I is just conjugation, or conjugation defined in momentum space, with this operator PHS is expressed as
P'Hpac (k)P ™' = (-U - Te* — TTe ™) = —~Hpaa(—Fk) (26)

thus one has to be careful.



For the Kitaev chain we have

—u 0 -t —A* .
U:( OM u)Z—MUz,T=< A : )=—t0z+1(Im(A)aw—Re(A)ay)
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note that the elements of this vector must be real to guarantee that the Hamiltonian is hermitian!
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since we are only interested in positive energies.
DISCUSS HERE SHAPE OF SPECTRUM!! PICTURES AND NOTEBOOKS!
A generic “2band” BdG matrix will also have the general form

Heac (k) = h(k) -7 = ha(k)ow + hy(k)oy + ha (K)o
let us see what restrictions does PHS give for this general case
PHpac(k)P~" = 0,Krh(k) - 6K row = 04 [ha(—k)ow — hy(—k)oy + ho(—k)o.] 0n
= [ha(=k)os + hy(—k)oy — ho(—k)o.] = —h(k) - &
thus we require that the z and y component be an odd function of & while the z component should be even.

hm/y(_k) = _hx/y(k)’ hz(_k) = hz(k)

This gives us a possibility for the definition of a topological invariant
DISCUSS HERE 8-0 TOPLOGICAL INVARIANT WITH THE BALL

Majorana fermions
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Topological invariants of insulators sign boundary modes. Boundary modes of the Kitaev wire can be cast in terms of MFs.

Algebraic properties of Majorana operators
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Generally thus
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Two MF-s make a real one! .
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Note that the two need not originate from the same place!
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Kitaev model for real A is written
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To highlight the two topologically distinct phases let us find the “fully dimerized” limits. The trivial case can be elucidated
when all manner of inter-site communications are absent that is A =t = 0:

H - Z % = _% Z [1bpay] (52)
H= Z —,uc;,cp (53)

thus we have proper fermions sitting on their original sites.
In the other phase, assume A =t¢, and =0
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here the ¢, operators are fermionic operators built from MFs of neighboring sites! Crucially, for a chain of length N two MF
operators are missing from the above expression, namely b; and ay! A fermionic operator can be built from them with the usual
recipie
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CBM =

however this annihilates a highly unusual non local particle.



