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The Josephson junction is a simple electric device where two superconductors are connected by
a thin insulating barrier. It exhibits the ac Josephson effect: when biased by a dc voltage, an
ac current develops at the Josephson frequency fJ = 2eV/h. This is true for conventional, s-wave
superconductors. In this lecture, we discuss that this effect changes qualitatively when the Josephson
junction is made of p-wave superconductors: the frequency of the ac current halves, it is fJ/2 instead
of the conventional fJ . This is often called 4π-periodic Josephson effect. We use the Kitaev chain as
a model for the p-wave junction, and use it to calculate the current-phase relation. We also discuss
some experimental constraints required to observe the 4π-periodic Josephson effect, and introduce
an experimental setup where the effect is detected with a superconducting radiation detector.

CONTENTS

Contributors 1

I. A voltage-biased s-wave Josephson junction radiates at the Josephson frequency 1

II. A voltage-biased p-wave josephson junction radiates at half of the Josephson frequency 4

III. Discussion 6

Resources 7

CONTRIBUTORS

Writeup: Andras Palyi. Discussions: Janos Asboth, Laszlo Oroszlany.

I. A VOLTAGE-BIASED S-WAVE JOSEPHSON JUNCTION RADIATES AT THE JOSEPHSON
FREQUENCY

1. A simple circuit built around a Josephson junction (JJ) is shown in Fig. 1. The superconducting contacts are
s-wave superconductors. A dc bias voltage V is switched on. Then, an ac current flows through the junction,
characterized by the Josephson frequency fJ = 2eV/h, corresponding to fJ/V ≈ 483.6 MHz/µV. This is called
the ac Josephson effect. Such an ac current induces electromagnetic radiation with frequency fJ , which depends
on the voltage V applied across the junction. With a frequency-sensitive detector, the radiation can be observed,
and its frequency can be determined.

2. Aside: an s-wave junction can radiate also at the higher harmonics of the Josephson frequency, nfJ (n = 1, 2, . . . ).
We can disregard that feature for this lecture.

3. Our goal in this lecture is to illustrate that the ac Josephson effect can in principle be used to experimentally
distinguish between s-wave and p-wave superconductivity, that is, between topologically trivial and nontrivial
phases of a one-dimensional superconductor. In particular, we illustrate that a p-wave junction can be distin-
guished from an s-wave junction, because the p-wave junction radiates at half of the Josephson frequency fJ/2.
This effect is also called the 4π-periodic ac Josephson effect, for reasons to be clarified below.

4. We illustrate the s-wave case using a minimal model, where each superconducting electrode of the junction
is represented by a single-site superconductor. The two electrodes are assumed to be identical, with the only
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on the voltage V applied across the junction. With a frequency-sensitive detector, the radiation can be observed,
and its frequency can be determined.

2. An s-wave junction can radiate also at the harmonics of the Josephson frequency, nfJ (n = 1, 2, . . . ). We can
disregard that for this lecture.

3. We claim that a p-wave junction can be distinguished from an s-wave junction, because the p-wave junction
radiates at half of the Josephson frequency fJ/2. This is called the 4⇡-periodic ac Josephson e↵ect, for reasons
to be clarified below.

4. We illustrate the s-wave case using a minimal model, where each superconducting electrodes of the junction
is represented by a single-site superconductor. The two electrodes are assumed to be identical, with the only
di↵erence being their phases of their superconducting order parameters. The model Hamiltonian reads

H = HL + HR + Ht, (1)

HL = �ei�c†
L"c

†
L# + h.c., (2)

HR = �c†
R"c

†
R# + h.c., (3)

Ht = t0
X

s2{",#}
c†
LscRs + h.c. (4)

Note that � > 0 and we assume t0 > 0 for concreteness. The phase di↵erence or phase bias is denoted by �.
We accept the voltage-phase Josephson relation as a starting point, �̇ = 2eV/~.

5. Interestingly, we will see that at zero-temperature equilibrium, there is a finite current flowing through the
tunnel barrier of the junction, if the phase bias is not zero or ⇡. More precisely, we will show the current-phase
Josephson relation (for a specific case) that I(�) = I0 sin(�). To obtain the time dependence of the current, we
will use an adiabatic picture: we will assume that the voltage is small, hence the phase bias has a slow time
dependence �(t) = 2eV t/~, and in any time t, the junction is in its instantaneous zero-temperature equilibrium
state (ground state) determined by �(t). As a result, we have I(t) = I0 sin(2eV t/~), that is, I(t) = I0 sin(2⇡fJ t),
so, indeed, the voltage-biased junction radiates with the Josephson frequency.

6. Consider now the ground state of H for a finite phase bias �. We claim that the current flowing through the
junction is finite. To show that, we need the particle current operator J representing electron flow through the
junction, and need to calculate h 0|J | 0i. One way to obtain the operator J is to consider the time-dependence

of the particle number on site R: QR =
P

s c†
RscRs, and consider the net particle flux into this site

JR ⌘ Q̇R = � i

~
[QR, H] = � i

~
[QR, HR] � i

~
[QR, Ht] ⌘ JR� + JRt. (5)

Clearly, the ground-state average of this quantity is zero, h 0|JR| 0i = 0, since the ground state is a stationary
state, so no physical quantity can change in time. However, the current flowing through the junction is not
JR, but only JRt: the other contribution J�t represents Cooper pairs being exchanged between site R and the
Cooper-pair reservoir attached to that site. This is depicted in Fig. FigReservoirs. Hence, J = JRt, and we
need to evaluate h 0|JRt| 0i. The exchange of electrons between the two sites is always compensated by the
exchange of electrons between site R and its Cooper-pair reservoir.

7. Fig. SWaveResults shows the energy spectrum and the ground-state current of our two-site junction, as functions
of the phase bias �, for ‘weak tunneling’, t0/� = 0.1. Note that we use colors to distinguish energy eigenstates
with even (blue) and odd (red) fermion parity. The ground state is nondegenerate and has even parity. The

current reproduces the sinusoidal dependence promised above. The amplitude of the current is J0 = t02

~� ; for the
parameter values t0 = 50µeV, � = 500µeV, this translates to an electric current amplitude of I0 = eJ0 ⇡ 1.22
nA.

FIG. 1. An s-wave Josephson junction exhibiting the ac Josephson effect.
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The Fock-space Hamiltonian of the left side of the junction, in the occupation basis 00, 01, 10, 11 based on L "
and L #:

HL =

0
BB@

0 0 0 �e�i�

0 ✏L 0 0
0 0 ✏L 0

�ei� 0 0 2✏L

1
CCA (3)

II. HOPPING NOISE ERASES THE INFORMATION IN A CHARGE QUBIT

1. Charge qubit. Two sites, e.g., a double quantum dot. Single-electron basis states |Li, |Ri. The two sites are
occupied by a single electron. Model Hamiltonian:

H =
✏

2
�z + v�x, (4)

where the Pauli matrices are defined as, e.g., �z = |Li hL| � |Ri hR|. On-site energy di↵erence ✏, hopping
amplitude v.

2. Charge Rabi oscillations. A simple example of the dynamics of the charge qubit is as follows. Consider ✏ = 0
and v > 0, e.g., v = 10 µeV, which is a reasonable value for a realistic double quantum dot. Prepare the initial
state as | 0i = |Li. Describe the dynamics, e.g., calculate the time evolution of the occupation probability of
the right site, that is, PR(t) ⌘ | hR| (t)i |2 =? Straightforward calculation shows that | (t)i = cos(vt/~) |Li �
i sin(vt/~) |Ri, and thereby PR(t) = sin2(vt/~). That is, the electron oscillates coherently between the two sites.
We call this simple dynamics charge Rabi oscillations. A complete cycle of those oscillations takes tRabi = h/2v
time. For v = 10µeV, we have tRabi ⇡ 0.2 ns.

3. Noise makes the charge-qubit state mixed. Noise, e.g., electric-field fluctuations, induce an uncontrolled, random
contribution to the charge-qubit Hamiltonian, leading to uncontrolled dynamics of the qubit state and hence to
loss of information. One simple way to describe such processes is to account for the noise via the Hamiltonian

H
(j)
noise = ⇠(j)x (t)�x + ⇠(j)y (t)�y + ⇠(j)z (t)�z, (5)

where the functions ⇠
(j)
↵ (t) are random functions of time, characterized by a ‘parameter’ or ‘index’ of realizations

j. Di↵erent noise realizations can have di↵erent probabilities, encoded in the probability density function (pdf)
P (j), which has to fulfill

P
j P (j) = 1 (if j is a discrete index) or

R
djP (j) = 1 (if j is a continuous parameter).

The evolution of the initial state | 0i depends on the noise realization. To get a statistical description of the
time evolution, one can use the density matrix:

⇢(t) =
X

j

P (j) | (j)(t)i h (j)(t)| , (6)

where  (j)(t) is the pure time-evolving state subject to noise realization j. Of course this ⇢(t) describes a mixed
state in general. (Note that this noise model is ‘classical’ in the sense that entanglement with the quantum
degrees of freedom of the environment is not taken into account.)

4. Fidelity. To describe the state-preserving quality of a charge qubit subject to noise, we use the concept of
fidelity. Fidelity between a pure quantum state | 0i and a mixed quantum state ⇢(t) can be defined as

F (t) =
p
h 0|⇢(t)| 0i. (7)

An example: if ⇢(t) is the same state as | 0i, that is, if ⇢(t) = | 0i h 0|, then F = 1. If they are unequal, then
their fidelity is less than 1. In particular, if ⇢(t) is completely mixed, i.e., ⇢(t) = 1

2 | 0i h 0| + 1
2 | ?

0 i h ?
0 | with

h 0| ?
0 i = 0, then F (t) = 1/

p
2 ⇡ 0.707. Note that this example reveals that a ⇠ 70% fidelity means that the

information encoded in the qubit is completely lost.
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on the voltage V applied across the junction. With a frequency-sensitive detector, the radiation can be observed,
and its frequency can be determined.

2. An s-wave junction can radiate also at the harmonics of the Josephson frequency, nfJ (n = 1, 2, . . . ). We can
disregard that for this lecture.

3. We claim that a p-wave junction can be distinguished from an s-wave junction, because the p-wave junction
radiates at half of the Josephson frequency fJ/2. This is called the 4⇡-periodic ac Josephson e↵ect, for reasons
to be clarified below.

4. We illustrate the s-wave case using a minimal model, where each superconducting electrodes of the junction
is represented by a single-site superconductor. The two electrodes are assumed to be identical, with the only
di↵erence being their phases of their superconducting order parameters. The model Hamiltonian reads

H = HL + HR + Ht, (1)

HL = �ei�c†
L"c

†
L# + h.c., (2)

HR = �c†
R"c

†
R# + h.c., (3)

Ht = t0
X

s2{",#}
c†
LscRs + h.c. (4)

Note that � > 0 and we assume t0 > 0 for concreteness. The phase di↵erence or phase bias is denoted by �.
We accept the voltage-phase Josephson relation as a starting point, �̇ = 2eV/~.

5. Interestingly, we will see that at zero-temperature equilibrium, there is a finite current flowing through the
tunnel barrier of the junction, if the phase bias is not zero or ⇡. More precisely, we will show the current-phase
Josephson relation (for a specific case) that I(�) = I0 sin(�). To obtain the time dependence of the current, we
will use an adiabatic picture: we will assume that the voltage is small, hence the phase bias has a slow time
dependence �(t) = 2eV t/~, and in any time t, the junction is in its instantaneous zero-temperature equilibrium
state (ground state) determined by �(t). As a result, we have I(t) = I0 sin(2eV t/~), that is, I(t) = I0 sin(2⇡fJ t),
so, indeed, the voltage-biased junction radiates with the Josephson frequency.

6. Consider now the ground state of H for a finite phase bias �. We claim that the current flowing through the
junction is finite. To show that, we need the particle current operator J representing electron flow through the
junction, and need to calculate h 0|J | 0i. One way to obtain the operator J is to consider the time-dependence

of the particle number on site R: QR =
P

s c†
RscRs, and consider the net particle flux into this site

JR ⌘ Q̇R = � i

~
[QR, H] = � i

~
[QR, HR] � i

~
[QR, Ht] ⌘ JR� + JRt. (5)

Clearly, the ground-state average of this quantity is zero, h 0|JR| 0i = 0, since the ground state is a stationary
state, so no physical quantity can change in time. However, the current flowing through the junction is not
JR, but only JRt: the other contribution J�t represents Cooper pairs being exchanged between site R and the
Cooper-pair reservoir attached to that site. This is depicted in Fig. FigReservoirs. Hence, J = JRt, and we
need to evaluate h 0|JRt| 0i. The exchange of electrons between the two sites is always compensated by the
exchange of electrons between site R and its Cooper-pair reservoir.

7. Fig. SWaveResults shows the energy spectrum and the ground-state current of our two-site junction, as functions
of the phase bias �, for ‘weak tunneling’, t0/� = 0.1. Note that we use colors to distinguish energy eigenstates
with even (blue) and odd (red) fermion parity. The ground state is nondegenerate and has even parity. The

current reproduces the sinusoidal dependence promised above. The amplitude of the current is J0 = t02

~� ; for the
parameter values t0 = 50µeV, � = 500µeV, this translates to an electric current amplitude of I0 = eJ0 ⇡ 1.22
nA.

FIG. 1. An s-wave Josephson junction exhibiting the ac Josephson e↵ect.

I. A VOLTAGE-BIASED S-WAVE JOSEPHSON JUNCTION RADIATES AT THE JOSEPHSON
FREQUENCY

1. A simple circuit built around a Josephson junction (JJ) is shown in Fig. 1. The superconducting contacts are
s-wave superconductors. A dc bias voltage V is switched on. Then, an ac current flows through the junction,
characterized by the Josephson frequency fJ = 2eV/h, corresponding to fJ/V ⇡ 483.6 MHz/µV. This is called
the ac Josephson e↵ect. Such an ac current induces electromagnetic radiation with frequency fJ , which depends
on the voltage V applied across the junction. With a frequency-sensitive detector, the radiation can be observed,
and its frequency can be determined.

2. Aside: an s-wave junction can radiate also at the higher harmonics of the Josephson frequency, nfJ (n = 1, 2, . . . ).
We can disregard that feature for this lecture.

3. Our goal in this lecture is to illustrate that the ac Josephson e↵ect can in principle be used to experimentally
distinguish between s-wave and p-wave superconductivity, that is, between topologically trivial and nontrivial
phases of a one-dimensional superconductor. In particular, we illustrate that a p-wave junction can be distin-
guished from an s-wave junction, because the p-wave junction radiates at half of the Josephson frequency fJ/2.
This e↵ect is also called the 4⇡-periodic ac Josephson e↵ect, for reasons to be clarified below.

4. We illustrate the s-wave case using a minimal model, where each superconducting electrode of the junction
is represented by a single-site superconductor. The two electrodes are assumed to be identical, with the only
di↵erence being their phases of their superconducting order parameters. The model Hamiltonian reads

H = HL + HR + Ht, (1)

HL = �ei�c†
L"c

†
L# + h.c., (2)

HR = �c†
R"c

†
R# + h.c., (3)

Ht = t0
X

s2{",#}
c†
LscRs + h.c. (4)

Note that � > 0 and we assume t0 > 0 for concreteness. The phase di↵erence or phase bias is denoted by �. We
accept the voltage-phase Josephson relation as a starting point, �̇ = 2eV/~. The structure of this Hamiltonian
is illustrated in Fig. ??.

5. t0 Interestingly, we will see that at zero-temperature equilibrium, there is a finite current flowing through the
tunnel barrier of the junction, if the phase bias is not zero or ⇡. More precisely, we will show the current-phase
Josephson relation (for a specific case) I(�) = I0 sin(�). To obtain the time dependence of the current, we will
use an adiabatic picture: we will assume that the voltage V is small and dc, hence the phase bias has a slow time
dependence �(t) = 2eV t/~, and in any time t, the junction is in its instantaneous zero-temperature equilibrium
state (ground state) determined by �(t). As a result, we have I(t) = I0 sin(2eV t/~), that is, I(t) = I0 sin(2⇡fJ t),
so, indeed, the voltage-biased junction produces electromagnetic radiation at the Josephson frequency.

FIG. 2. Structure of the two-site model Hamiltonian of the s-wave Josephson junction.

difference being their phases of their superconducting order parameters. The model Hamiltonian reads

H = HL +HR +Ht, (1)

HL = ∆eiφc†L↑c
†
L↓ + h.c., (2)

HR = ∆c†R↑c
†
R↓ + h.c., (3)

Ht = t′
∑

s∈{↑,↓}
c†LscRs + h.c. (4)

Note that ∆ > 0 and we assume t′ > 0 for concreteness. The phase difference or phase bias is denoted by φ. We
accept the voltage-phase Josephson relation as a starting point, φ̇ = 2eV/~. The structure of this Hamiltonian
is illustrated in Fig. 2.

5. Exercise. Write out the Fock-space Hamiltonian matrix of HL, and calculate its energy eigenstates and eigen-
values.

6. Interestingly, we will see that at zero-temperature equilibrium, there is a finite current flowing through the
tunnel barrier of the junction, if the phase bias is not zero or π. More precisely, we will show the current-phase
Josephson relation (for a specific case) I(φ) = I0 sin(φ). To obtain the time dependence of the current, we will
use an adiabatic picture: we will assume that the voltage V is small and dc, hence the phase bias has a slow time
dependence φ(t) = 2eV t/~, and in any time t, the junction is in its instantaneous zero-temperature equilibrium
state (ground state) determined by φ(t). As a result, we have I(t) = I0 sin(2eV t/~), that is, I(t) = I0 sin(2πfJ t),
so, indeed, the voltage-biased junction produces electromagnetic radiation at the Josephson frequency.
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FIG. 3. Energy spectrum (left panel) and ground-state current (right panel) of an s-wave Josephson junction.

7. To demonstrate the preceding statement, consider now the ground state of our two-site junction Hamiltonian H
for a finite, static phase bias φ. We claim that the current flowing through the junction is finite. To show that,
we need the particle current operator J representing electron flow through the junction, and need to calculate
〈Ψ0|J |Ψ0〉. One way to obtain the operator J is to consider the time-dependence of the particle number on site

R: QR =
∑
s c

†
RscRs, and consider the net particle flux into this site

JR ≡ Q̇R = − i
~

[QR, H] = − i
~

[QR, HR]− i

~
[QR, Ht] ≡ JR∆ + JRt. (5)

Clearly, the ground-state average of this quantity is zero, 〈Ψ0|JR|Ψ0〉 = 0, since the ground state is a stationary
state, so no physical quantity can change in time when this state is realized. However, the current flowing through
the junction is not JR, but only JRt: the other contribution J∆t represents Cooper pairs being exchanged between
site R and the Cooper-pair reservoir attached to that site. This is also seen in Fig. 2. Hence, J = JRt, and
we need to evaluate 〈Ψ0|JRt|Ψ0〉. Note also that the exchange of electrons between the two sites is always
compensated by the exchange of electrons between site R and its Cooper-pair reservoir; that is, since the ground
state |Ψ0〉 is stationary (〈Ψ0|JR|Ψ0〉 = 0), therefore 〈Ψ0|JRt|Ψ0〉 = −〈Ψ0|JR∆|Ψ0〉.

8. Fig. 3 shows the energy spectrum and the ground-state current of our two-site junction, as functions of the
phase bias φ, for ‘weak tunneling’, t′/∆ = 0.1. Note that we use colors to distinguish energy eigenstates
with even (blue) and odd (red) fermion parity. The ground state is nondegenerate and has even parity. The

current reproduces the sinusoidal dependence promised above. The amplitude of the current is J0 = t′2

~∆ ; for the
parameter values t′ = 50µeV, ∆ = 500µeV, this translates to an electric current amplitude of I0 = eJ0 ≈ 1.22
nA.

9. Exercise. The results shown in Fig. 3 are obtained numerically. They can also be confirmed analytically. For
example, one can do perturbation theory in the small parameter t′/∆ to obtain the ground state of the junction,
and to calculate the current from that. A further alternative is to calculate the ground-state current in terms
of the Bogoliubov-de Gennes representation. These are instructive exercises for the interested reader.

10. From the above exercise, some of the ‘physics’ behind the ac Josephson effect is also clarified. For example,
it turns out that the Josephson current is carried by Cooper-pair tunneling : the elementary charge-transfer
process is actually a two-step process. First, a Cooper-pair on one side is broken up, one of the two electrons
is transmitted to other side, while the other remains as a quasiparticle. This is a virtual intermediate state
that has an energy penalty of ≈ ∆. Second, the quasiparticle is also transmitted and they form a Cooper pair
together on the other side, hence their final energy is the same as the energy of the initial state. The fact that
the Josephson current is due to Cooper-pair tunneling is also reflected in above relation J0 ∼ t′2.
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occupied by a single electron. Model Hamiltonian:

H =
✏

2
�z + v�x, (4)

where the Pauli matrices are defined as, e.g., �z = |Li hL| � |Ri hR|. On-site energy di↵erence ✏, hopping
amplitude v.

2. Charge Rabi oscillations. A simple example of the dynamics of the charge qubit is as follows. Consider ✏ = 0
and v > 0, e.g., v = 10 µeV, which is a reasonable value for a realistic double quantum dot. Prepare the initial
state as | 0i = |Li. Describe the dynamics, e.g., calculate the time evolution of the occupation probability of
the right site, that is, PR(t) ⌘ | hR| (t)i |2 =? Straightforward calculation shows that | (t)i = cos(vt/~) |Li �
i sin(vt/~) |Ri, and thereby PR(t) = sin2(vt/~). That is, the electron oscillates coherently between the two sites.
We call this simple dynamics charge Rabi oscillations. A complete cycle of those oscillations takes tRabi = h/2v
time. For v = 10µeV, we have tRabi ⇡ 0.2 ns.

3. Noise makes the charge-qubit state mixed. Noise, e.g., electric-field fluctuations, induce an uncontrolled, random
contribution to the charge-qubit Hamiltonian, leading to uncontrolled dynamics of the qubit state and hence to
loss of information. One simple way to describe such processes is to account for the noise via the Hamiltonian

H
(j)
noise = ⇠(j)x (t)�x + ⇠(j)y (t)�y + ⇠(j)z (t)�z, (5)

where the functions ⇠
(j)
↵ (t) are random functions of time, characterized by a ‘parameter’ or ‘index’ of realizations

j. Di↵erent noise realizations can have di↵erent probabilities, encoded in the probability density function (pdf)
P (j), which has to fulfill

P
j P (j) = 1 (if j is a discrete index) or

R
djP (j) = 1 (if j is a continuous parameter).

The evolution of the initial state | 0i depends on the noise realization. To get a statistical description of the
time evolution, one can use the density matrix:

⇢(t) =
X

j

P (j) | (j)(t)i h (j)(t)| , (6)

where  (j)(t) is the pure time-evolving state subject to noise realization j. Of course this ⇢(t) describes a mixed
state in general. (Note that this noise model is ‘classical’ in the sense that entanglement with the quantum
degrees of freedom of the environment is not taken into account.)

4. Fidelity. To describe the state-preserving quality of a charge qubit subject to noise, we use the concept of
fidelity. Fidelity between a pure quantum state | 0i and a mixed quantum state ⇢(t) can be defined as

F (t) =
p
h 0|⇢(t)| 0i. (7)

An example: if ⇢(t) is the same state as | 0i, that is, if ⇢(t) = | 0i h 0|, then F = 1. If they are unequal, then
their fidelity is less than 1. In particular, if ⇢(t) is completely mixed, i.e., ⇢(t) = 1

2 | 0i h 0| + 1
2 | ?

0 i h ?
0 | with

h 0| ?
0 i = 0, then F (t) = 1/

p
2 ⇡ 0.707. Note that this example reveals that a ⇠ 70% fidelity means that the

information encoded in the qubit is completely lost.
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The Fock-space Hamiltonian of the left side of the junction, in the occupation basis 00, 01, 10, 11 based on L "
and L #:

HL =

0
BB@

0 0 0 �e�i�

0 ✏L 0 0
0 0 ✏L 0

�ei� 0 0 2✏L

1
CCA (3)

II. HOPPING NOISE ERASES THE INFORMATION IN A CHARGE QUBIT

1. Charge qubit. Two sites, e.g., a double quantum dot. Single-electron basis states |Li, |Ri. The two sites are
occupied by a single electron. Model Hamiltonian:

H =
✏

2
�z + v�x, (4)

where the Pauli matrices are defined as, e.g., �z = |Li hL| � |Ri hR|. On-site energy di↵erence ✏, hopping
amplitude v.

2. Charge Rabi oscillations. A simple example of the dynamics of the charge qubit is as follows. Consider ✏ = 0
and v > 0, e.g., v = 10 µeV, which is a reasonable value for a realistic double quantum dot. Prepare the initial
state as | 0i = |Li. Describe the dynamics, e.g., calculate the time evolution of the occupation probability of
the right site, that is, PR(t) ⌘ | hR| (t)i |2 =? Straightforward calculation shows that | (t)i = cos(vt/~) |Li �
i sin(vt/~) |Ri, and thereby PR(t) = sin2(vt/~). That is, the electron oscillates coherently between the two sites.
We call this simple dynamics charge Rabi oscillations. A complete cycle of those oscillations takes tRabi = h/2v
time. For v = 10µeV, we have tRabi ⇡ 0.2 ns.

3. Noise makes the charge-qubit state mixed. Noise, e.g., electric-field fluctuations, induce an uncontrolled, random
contribution to the charge-qubit Hamiltonian, leading to uncontrolled dynamics of the qubit state and hence to
loss of information. One simple way to describe such processes is to account for the noise via the Hamiltonian

H
(j)
noise = ⇠(j)x (t)�x + ⇠(j)y (t)�y + ⇠(j)z (t)�z, (5)

where the functions ⇠
(j)
↵ (t) are random functions of time, characterized by a ‘parameter’ or ‘index’ of realizations

j. Di↵erent noise realizations can have di↵erent probabilities, encoded in the probability density function (pdf)
P (j), which has to fulfill

P
j P (j) = 1 (if j is a discrete index) or

R
djP (j) = 1 (if j is a continuous parameter).

The evolution of the initial state | 0i depends on the noise realization. To get a statistical description of the
time evolution, one can use the density matrix:

⇢(t) =
X

j

P (j) | (j)(t)i h (j)(t)| , (6)

where  (j)(t) is the pure time-evolving state subject to noise realization j. Of course this ⇢(t) describes a mixed
state in general. (Note that this noise model is ‘classical’ in the sense that entanglement with the quantum
degrees of freedom of the environment is not taken into account.)

4. Fidelity. To describe the state-preserving quality of a charge qubit subject to noise, we use the concept of
fidelity. Fidelity between a pure quantum state | 0i and a mixed quantum state ⇢(t) can be defined as

F (t) =
p
h 0|⇢(t)| 0i. (7)

An example: if ⇢(t) is the same state as | 0i, that is, if ⇢(t) = | 0i h 0|, then F = 1. If they are unequal, then
their fidelity is less than 1. In particular, if ⇢(t) is completely mixed, i.e., ⇢(t) = 1
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0 i = 0, then F (t) = 1/
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2 ⇡ 0.707. Note that this example reveals that a ⇠ 70% fidelity means that the
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on the voltage V applied across the junction. With a frequency-sensitive detector, the radiation can be observed,
and its frequency can be determined.

2. An s-wave junction can radiate also at the harmonics of the Josephson frequency, nfJ (n = 1, 2, . . . ). We can
disregard that for this lecture.

3. We claim that a p-wave junction can be distinguished from an s-wave junction, because the p-wave junction
radiates at half of the Josephson frequency fJ/2. This is called the 4⇡-periodic ac Josephson e↵ect, for reasons
to be clarified below.

4. We illustrate the s-wave case using a minimal model, where each superconducting electrodes of the junction
is represented by a single-site superconductor. The two electrodes are assumed to be identical, with the only
di↵erence being their phases of their superconducting order parameters. The model Hamiltonian reads

H = HL + HR + Ht, (1)

HL = �ei�c†
L"c

†
L# + h.c., (2)

HR = �c†
R"c

†
R# + h.c., (3)

Ht = t0
X

s2{",#}
c†
LscRs + h.c. (4)

Note that � > 0 and we assume t0 > 0 for concreteness. The phase di↵erence or phase bias is denoted by �.
We accept the voltage-phase Josephson relation as a starting point, �̇ = 2eV/~.

5. Interestingly, we will see that at zero-temperature equilibrium, there is a finite current flowing through the
tunnel barrier of the junction, if the phase bias is not zero or ⇡. More precisely, we will show the current-phase
Josephson relation (for a specific case) that I(�) = I0 sin(�). To obtain the time dependence of the current, we
will use an adiabatic picture: we will assume that the voltage is small, hence the phase bias has a slow time
dependence �(t) = 2eV t/~, and in any time t, the junction is in its instantaneous zero-temperature equilibrium
state (ground state) determined by �(t). As a result, we have I(t) = I0 sin(2eV t/~), that is, I(t) = I0 sin(2⇡fJ t),
so, indeed, the voltage-biased junction radiates with the Josephson frequency.

6. Consider now the ground state of H for a finite phase bias �. We claim that the current flowing through the
junction is finite. To show that, we need the particle current operator J representing electron flow through the
junction, and need to calculate h 0|J | 0i. One way to obtain the operator J is to consider the time-dependence

of the particle number on site R: QR =
P

s c†
RscRs, and consider the net particle flux into this site

JR ⌘ Q̇R = � i

~
[QR, H] = � i

~
[QR, HR] � i

~
[QR, Ht] ⌘ JR� + JRt. (5)

Clearly, the ground-state average of this quantity is zero, h 0|JR| 0i = 0, since the ground state is a stationary
state, so no physical quantity can change in time. However, the current flowing through the junction is not
JR, but only JRt: the other contribution J�t represents Cooper pairs being exchanged between site R and the
Cooper-pair reservoir attached to that site. This is depicted in Fig. FigReservoirs. Hence, J = JRt, and we
need to evaluate h 0|JRt| 0i. The exchange of electrons between the two sites is always compensated by the
exchange of electrons between site R and its Cooper-pair reservoir.

7. Fig. SWaveResults shows the energy spectrum and the ground-state current of our two-site junction, as functions
of the phase bias �, for ‘weak tunneling’, t0/� = 0.1. Note that we use colors to distinguish energy eigenstates
with even (blue) and odd (red) fermion parity. The ground state is nondegenerate and has even parity. The

current reproduces the sinusoidal dependence promised above. The amplitude of the current is J0 = t02

~� ; for the
parameter values t0 = 50µeV, � = 500µeV, this translates to an electric current amplitude of I0 = eJ0 ⇡ 1.22
nA.

FIG. 1. An s-wave Josephson junction exhibiting the ac Josephson e↵ect.

I. A VOLTAGE-BIASED S-WAVE JOSEPHSON JUNCTION RADIATES AT THE JOSEPHSON
FREQUENCY

1. A simple circuit built around a Josephson junction (JJ) is shown in Fig. 1. The superconducting contacts are
s-wave superconductors. A dc bias voltage V is switched on. Then, an ac current flows through the junction,
characterized by the Josephson frequency fJ = 2eV/h, corresponding to fJ/V ⇡ 483.6 MHz/µV. This is called
the ac Josephson e↵ect. Such an ac current induces electromagnetic radiation with frequency fJ , which depends
on the voltage V applied across the junction. With a frequency-sensitive detector, the radiation can be observed,
and its frequency can be determined.

2. Aside: an s-wave junction can radiate also at the higher harmonics of the Josephson frequency, nfJ (n = 1, 2, . . . ).
We can disregard that feature for this lecture.

3. Our goal in this lecture is to illustrate that the ac Josephson e↵ect can in principle be used to experimentally
distinguish between s-wave and p-wave superconductivity, that is, between topologically trivial and nontrivial
phases of a one-dimensional superconductor. In particular, we illustrate that a p-wave junction can be distin-
guished from an s-wave junction, because the p-wave junction radiates at half of the Josephson frequency fJ/2.
This e↵ect is also called the 4⇡-periodic ac Josephson e↵ect, for reasons to be clarified below.

4. We illustrate the s-wave case using a minimal model, where each superconducting electrode of the junction
is represented by a single-site superconductor. The two electrodes are assumed to be identical, with the only
di↵erence being their phases of their superconducting order parameters. The model Hamiltonian reads

H = HL + HR + Ht, (1)

HL = �ei�c†
L"c

†
L# + h.c., (2)

HR = �c†
R"c

†
R# + h.c., (3)

Ht = t0
X

s2{",#}
c†
LscRs + h.c. (4)

Note that � > 0 and we assume t0 > 0 for concreteness. The phase di↵erence or phase bias is denoted by �. We
accept the voltage-phase Josephson relation as a starting point, �̇ = 2eV/~. The structure of this Hamiltonian
is illustrated in Fig. ??.

5. t0 Interestingly, we will see that at zero-temperature equilibrium, there is a finite current flowing through the
tunnel barrier of the junction, if the phase bias is not zero or ⇡. More precisely, we will show the current-phase
Josephson relation (for a specific case) I(�) = I0 sin(�). To obtain the time dependence of the current, we will
use an adiabatic picture: we will assume that the voltage V is small and dc, hence the phase bias has a slow time
dependence �(t) = 2eV t/~, and in any time t, the junction is in its instantaneous zero-temperature equilibrium
state (ground state) determined by �(t). As a result, we have I(t) = I0 sin(2eV t/~), that is, I(t) = I0 sin(2⇡fJ t),
so, indeed, the voltage-biased junction produces electromagnetic radiation at the Josephson frequency.
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FIG. 3. Energy spectrum (left panel) and ground-state current (right panel) of an s-wave Josephson junction.

II. A VOLTAGE-BIASED P-WAVE JOSEPHSON JUNCTION RADIATES AT HALF OF THE
JOSEPHSON FREQUENCY

1. Calculating the current for a p-wave junction is conceptually similar to that for the s-wave case, but there
are also some qualitative di↵erences on the conceptual level. Most importantly, the ground state of a p-wave
junction is not separated from the excited state by the superconducting gap �; instead, there are 4 low-energy
levels, energetically close to each other. Therefore, it is not straightforward to adopt the ‘adiabatic picture’
followed in the case of the s-wave junction.

2. The minimal model for the p-wave junction consists of two Kitaev double dots in the topological fully dimerized
limit. The Hamiltonian is illustrated in Fig. ??, and in the topological fully dimerized limit v = � it reads

HL = �(c†
1c2 + h.c.) + �(ei�c†

1c
†
2 + h.c.), (6)

HR = �(c†
3c4 + h.c.) + �(c†

3c
†
4 + h.c.), (7)

Ht = t0(c†
2c3 + h.c.). (8)

3. Fig. FigPWaveSpectrum (a) shows the energy spectrum of the p-wave junction as the function of the phase
bias �, for a weak tunneling amplitude t0/� = 0.1. Fig. FigPWaveSpectrum (b) shows a zoom-in on the four
lowermost energies. Key features of the low-energy spectrum are as follows. (i) There are four levels in the
low-energy part, forming two twofold degenerate pairs. (ii) For both pairs, one state of the pair is even (blue),
the other is odd (red). (iii) At phase bias � = ⇡, all four levels are degenerate.

4. Discussion of (i): For a disconnected junction, t0 = 0, we have two topological Kitaev double dots, each of them
having a twofold degenerate ground state. That is, a disconnected junction would have a fourfold degenerate
ground state for any �. Here, the weak tunneling induces a small splitting of this fourfold degeneracy for a
generic �, but these four levels remain close to each other, as seen in Fig. FigPWaveSpectrum (b).

5. Discussion of (ii): The even-odd degeneracy of both pairs is explained by the fact that even in the tunnel-
coupled junction, there are two localized Majorana zero modes at the very ends of the junction, on site 1 and
on site 4. These Majorana zero modes remain uncoupled even if sites 2 and 3 are coupled by the tunneling
amplitude t. Therefore, these two Majorana zero modes define a single zero-energy fermionic excitation, dend =
1p
2
(�LL + i�RR), which guarantees that all energy eigenvalues have this twofold, even-odd degeneracy.

6. Discussion of (iii): The energy splitting between the pairs is interpreted as the tunneling-induced hybridization of
the two central Majorana zero modes �LR and �RL of the disconnected junction. Due to the nonzero tunneling t0,
the Majorana zero modes are no longer eigenmodes of the Hamiltonian, but their appropriate linear combination
does give a finite-energy fermionic excitation (to a good approximation). A remarkable exception is the case
� = ⇡, see Fig. FigPWaveSpectrum (b), where this fermionic excitation energy takes a zero value. (TODO:
explain this.)
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FIG. 3. Energy spectrum (left panel) and ground-state current (right panel) of an s-wave Josephson junction.

II. A VOLTAGE-BIASED P-WAVE JOSEPHSON JUNCTION RADIATES AT HALF OF THE
JOSEPHSON FREQUENCY

1. Calculating the current for a p-wave junction is conceptually similar to that for the s-wave case, but there
are also some qualitative di↵erences on the conceptual level. Most importantly, the ground state of a p-wave
junction is not separated from the excited state by the superconducting gap �; instead, there are 4 low-energy
levels, energetically close to each other. Therefore, it is not straightforward to adopt the ‘adiabatic picture’
followed in the case of the s-wave junction.

2. The minimal model for the p-wave junction consists of two Kitaev double dots in the topological fully dimerized
limit. The Hamiltonian is illustrated in Fig. ??, and in the topological fully dimerized limit v = � it reads

HL = �(c†
1c2 + h.c.) + �(ei�c†

1c
†
2 + h.c.), (6)

HR = �(c†
3c4 + h.c.) + �(c†

3c
†
4 + h.c.), (7)

Ht = t0(c†
2c3 + h.c.). (8)

3. Fig. FigPWaveSpectrum (a) shows the energy spectrum of the p-wave junction as the function of the phase
bias �, for a weak tunneling amplitude t0/� = 0.1. Fig. FigPWaveSpectrum (b) shows a zoom-in on the four
lowermost energies. Key features of the low-energy spectrum are as follows. (i) There are four levels in the
low-energy part, forming two twofold degenerate pairs. (ii) For both pairs, one state of the pair is even (blue),
the other is odd (red). (iii) At phase bias � = ⇡, all four levels are degenerate.

4. Discussion of (i): For a disconnected junction, t0 = 0, we have two topological Kitaev double dots, each of them
having a twofold degenerate ground state. That is, a disconnected junction would have a fourfold degenerate
ground state for any �. Here, the weak tunneling induces a small splitting of this fourfold degeneracy for a
generic �, but these four levels remain close to each other, as seen in Fig. FigPWaveSpectrum (b).

5. Discussion of (ii): The even-odd degeneracy of both pairs is explained by the fact that even in the tunnel-
coupled junction, there are two localized Majorana zero modes at the very ends of the junction, on site 1 and
on site 4. These Majorana zero modes remain uncoupled even if sites 2 and 3 are coupled by the tunneling
amplitude t. Therefore, these two Majorana zero modes define a single zero-energy fermionic excitation, dend =
1p
2
(�LL + i�RR), which guarantees that all energy eigenvalues have this twofold, even-odd degeneracy.

6. Discussion of (iii): The energy splitting between the pairs is interpreted as the tunneling-induced hybridization of
the two central Majorana zero modes �LR and �RL of the disconnected junction. Due to the nonzero tunneling t0,
the Majorana zero modes are no longer eigenmodes of the Hamiltonian, but their appropriate linear combination
does give a finite-energy fermionic excitation (to a good approximation). A remarkable exception is the case
� = ⇡, see Fig. FigPWaveSpectrum (b), where this fermionic excitation energy takes a zero value. (TODO:
explain this.)

FIG. 4. Structure of the four-site model Hamiltonian of the p-wave Josephson junction.

II. A VOLTAGE-BIASED P-WAVE JOSEPHSON JUNCTION RADIATES AT HALF OF THE
JOSEPHSON FREQUENCY

1. Calculating the current for a p-wave junction is conceptually similar to that for the s-wave case, but there
are also some qualitative differences on the conceptual level. Most importantly, the ground state of a p-wave
junction is not separated from the excited state by the superconducting gap ∆; instead, there are 4 low-energy
levels, energetically close to each other. Therefore, it is not straightforward to adopt the ‘adiabatic picture’
followed in the case of the s-wave junction.

2. The minimal model for the p-wave junction consists of two Kitaev double dots in the topological fully dimerized
limit. The Hamiltonian is illustrated in Fig. 4, and in the topological fully dimerized limit v = ∆ it reads

HL = ∆(c†1c2 + h.c.) + ∆(eiφc†1c
†
2 + h.c.), (6)

HR = ∆(c†3c4 + h.c.) + ∆(c†3c
†
4 + h.c.), (7)

Ht = t′(c†2c3 + h.c.). (8)

3. Fig. 5 left panel shows the full energy spectrum of the p-wave junction as the function of the phase bias φ, for a
weak tunneling amplitude t′/∆ = 0.1. Fig. 5 right panel shows a zoom-in on the four lowermost energies. Again,
we use colors to indicate even (blue) and odd (red) fermion parity. Key features of the low-energy spectrum are
as follows. (i) There are four levels in the low-energy part, forming two twofold degenerate pairs. (ii) For both
pairs, one state of the pair is even (blue), the other is odd (red). (iii) At phase bias φ = π, all four levels are
degenerate.

4. Discussion of (i): For a disconnected junction, t′ = 0, we have two topological Kitaev double dots, each of them
having a twofold degenerate ground state. That is, a disconnected junction would have a fourfold degenerate
ground state for any φ. Here, the weak tunneling induces a small splitting of this fourfold degeneracy for a
generic φ, but these four levels remain close to each other, as seen in the right panel of Fig. 5.

5. Discussion of (ii): The even-odd degeneracy of both pairs is explained by the fact that even in the tunnel-
coupled junction, there are two localized Majorana zero modes, call them γLL and γRR, at the very ends of the
junction, on site 1 and on site 4. These Majorana zero modes remain Majorana zero modes even if sites 2 and
3 are coupled by the tunneling amplitude t′ and form a finite-energy fermionic excitation. Therefore, γLL and
γRR define a single zero-energy fermionic excitation, dend = 1√

2
(γLL + iγRR), which guarantees that all energy

eigenvalues have the twofold even-odd degeneracy seen in Fig. 5.

6. Discussion of (iii): The energy splitting between the pairs is interpreted as the tunneling-induced hybridization
of the two central Majorana zero modes γLR and γRL of the disconnected junction. Due to the nonzero tunneling
t′, these two Majorana zero modes are no longer eigenvectors of the Bogoliubov-de Gennes matrix, but their
appropriate linear combination does give a finite-energy fermionic excitation. A remarkable exception is the
case φ = π, see Fig. 5, where this fermionic excitation energy takes a zero value.
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FIG. 5. Full energy spectrum (left panel) and the low-energy part of the energy spectrum (right panel) of the
four-site p-wave Josephson junction.
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FIG. 6. Low-energy spectrum showing four energy eigenstates (left panel), and the phase-dependent current
for each energy eigenstate.

7. Exercise. Prove that for φ = π, the fermionic excitation composed of γLR and γRL has zero energy, and
generalize this result to longer chains, using the Bogoliubov-de Gennes representation and perturbation theory
in the tunnel t′.

8. The current flowing through the junction can be calculated the same way as for the s-wave case, for each of these
four low-energy states. The four resulting current-phase relations are shown in Fig. 6. The current amplitude
is J0 = t′/(2~), and the phase dependence of the current is sinusoidal – these can be derived analytically using
first-order degenerate perturbation theory in t′/∆. Note that the current is the same in the even and odd ground
states. That is no surprise: we have seen (lecture 5, section II.) that local observables in two states are identical
if those two states differ only by a zero-energy fermionic excitation built from Majorana zero modes (that is
dend in this case).

9. The question is: assume that initially, the phase bias is φ = 0, the junction is in its even ground state, and a
voltage V across the junction is switched on; how does the current depend on time?

10. Assuming no quasiparticle poisoning, and using the adiabatic picture as before, we conclude that the evolution
of the state will certainly follow the instantaneous even ground state up to φ = π, that is, up to t = h/(eV ).
From that time point, how does the time evolution go on? Will the state evolve as the even ground state, or as
the even excited state? It is a generic feature of such level crossings that the state evolution follows the excited
state after the crossing is left behind (cf. the Landau-Zener problem). But we can also come to this conclusion
just by looking at the current-phase relations: it is natural to expect that any physical quantity, including the
particle current, should be a continuous function of time, and that implies that from φ = π the state evolution
will follow the even excited state.
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11. The preceding argument implies that the evolution of the state will follow the numbering shown in the left
panel of Fig. 6. Namely, first the state will follow the even ground state (1, blue dots) for φ ∈ [0, π], that
is, for t ∈ [0, h/(4eV )]. Then, it will follow the even excited state, see (2, blue dots) and (3, blue dots), for
t ∈ [h/(4eV ), 3h/(4eV )]. Finally, it will follow the even ground state (4, blue dots) for t ∈ [3h/(4eV ), h/(eV )].
This means that the state evolution will be periodic in time, but not with the Josephson time period h/(2eV ),
but with twice the Josephson time period, that is, h/(eV ). Of course, the time dependence of the current will
also have twice the Josephson time period, that is, h/(eV ).

12. Therefore we conclude that the time evolution of the current is I(t) = −I0 sin(eV t/~) = −I0 sin(2π(fJ/2)t).
Hence, the voltage-biased p-wave junction radiates with half of the Josephson frequency.

III. DISCUSSION

1. In a p-wave junction, fast quasiparticle poisoning makes the current-phase relation 2π-periodic. This is the case
when quasiparticle poisoning time is shorter than the Josephson time (that is, the inverse Josephson frequency),
tqp � h/(2eV ); for a realistic value of V = 10µV, this translates to tqp � 200 ps.

2. The adiabatic picture used in the above discussion of the 4π-periodic Josephson effect can break down for various
reasons. For example, if the voltage applied between the two superconducting contacts it too large, approaching
the superconducting gap as eV ∼ ∆, then the resulting time-evolving phase winds so quickly that it can excite
the junction from its ground state to excited states.

3. On the other hand, if the voltage is too low, approaching the tunneling energy scale as eV . t′, then the
corresponding phase dynamics can induce transitions between the two low-energy states of a given parity, e.g.,
the two blue-dotted levels in Fig. 6, left panel.

4. In a real setup, there is a small gap opened at the apparent level crossing in Fig. 6, left panel, at φ = π. This
is due to the fact that the Majorana zero modes have nonzero spatial extents and thereby hybridize with each
other. This small gap opens up the possibility of remaining in the even ground state when the phase bias
passes through the φ = π point. Quantitatively, the probability of evolving to the excited state (PLZ) and the
probability of remaining in the ground state (1−PLZ) is described by the so-called Landau-Zener model, which
we do not detail here. We note, however, that PLZ = 1 in case of a level crossing, and for a finite anticrossing
gap, PLZ decreases (i) if the gap size is increased, and (ii) if the phase-winding speed is decreased. Clearly, if
PLZ is significantly less than 1, then the 4π-periodicity of the Josephson effect is lost, and a 2π-periodicity is
reinforced for PLZ � 1.

5. The work of Laroche et al. claims to demonstrate the 4π Josephson effect, using an experimental setup where
the Josephson radiation is detected by an appropriately designed frequency-sensitive radiation detector. Below,
we briefly summarized the principle of the experiment.

6. Interestingly, the detector itself is an s-wave Josephson junction. The measured quantity at the detector is its
dc current, Idcdet, and not the time-varying Josephson current. For a voltage-biased s-wave Josephson junction,
the voltage dependence of the dc current shows an ‘switching’ or ‘activation’ behavior: it is essentially zero as
long as eVdet < 2∆det, where Vdet is the voltage applied between the s-wave contacts of the detector, and ∆det

is the superconducting gap of the s-wave contacts of the detector, and the dc current switches to a finite value
at eVdet = 2∆det.

7. The reason for this switching behavior is explained by the following simple energy conservation argument. In
the presence of the bias voltage Vdet, the excess energy on the left contact is NeeVdet, where Ne is the number
of electrons there. A single Cooper pair on the left contact can split up, in such a way that one of the electrons
is transmitted to the right contact, and the other electron stays on the left as a quasiparticle, if this final state
is energetically favorable over the initial state: NeeVdet ≥ [(Ne− 1)eVdet+ ∆det] + ∆det. On the right hand side,
the term [.] is the energy of the left contact in the final state, whereas the rest is the energy of the right contact
in the final state, supporting the single quasiparticle. Rearranging this equation yields the above threshold
condition, i.e., that the Idcdet switches on for eVdet > 2∆det.

8. In the presence of an incoming radiation with frequency f , the electrons of the Cooper pair can gain energy from
that radiation, changing the threshold condition to eVdet > 2∆det − hf . Therefore, by measuring the threshold
voltage without and with radiation, the difference will reveal the frequency of the radiation. This principle is
used to determine the radiation frequency of the Josephson junction that is being probed, and to distinguish
between the s-wave junction, which radiates at fJ , and the p-wave junction, which radiates at fJ/2.



7

RESOURCES

Overview:
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108, 257001 (2012)
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(2012)
Houzet et al., Dynamics of Majorana States in a Topological Josephson Junction Phys. Rev. Lett. 111, 046401
(2013).

Experiment:
Laroche et al., Observation of the 4π-periodic Josephson effect in InAs nanowires, https://arxiv.org/abs/1712.08459


