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Chapter 1
The Su-Schrieffer-Heeger (SSH) model

We take a hands-on approach and get to know the basic concepts of topological
insulators via a concrete system: the Su-Schrieffer-Heeger (SSH) model describes
spinless fermions hopping on a one-dimensional lattice with staggered hopping am-
plitudes. Using the SSH model, we introduce the concepts of single-particle Hamil-
tonian, the difference between bulk and boundary, chiral symmetry, adiabatic equiv-
alence, topological invariants, and bulk–boundary correspondence.

Fig. 1.1 Geometry of the SSH model. Filled (empty) circles are sites on sublattice A (B), each
hosting a single state. They are grouped into unit cells: the n = 6th cell is circled by a dotted
line. Hopping amplitudes are staggered: intracell hopping v (thin lines) is different from intercell
hopping w (thick lines). The left and right edge regions are indicated by blue and red shaded
background.

1.1 The SSH Hamiltonian

The Su-Schrieffer-Heeger (SSH) model describes electrons hopping on a chain
(one-dimensional lattice), with staggered hopping amplitudes, as shown in Fig. 1.1.
The chain consist of N unit cells, each unit cell hosting two sites, one on sublattice
A, and one on sublattice B. Interactions between the electrons are neglected, and so
the dynamics of each electron is described by a single-particle Hamiltonian, of the
form

Ĥ = v
N

Â
m=1

�
|m,Bihm,A|+h.c.

�
+w

N�1

Â
m=1

�
|m+1,Aihm,B|+h.c.

�
. (1.1)
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If the bulk has nontrivial topology, !
then the edge has disorder-resistant bound states!

(‘bulk-boundary correspondence’)



SSH is a tight-binding toy model for polyacetylene
Polyacetylene

Su-Schrieffer-Heeger (SSH) model of polyacetylene
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Here |m,Ai and |m,Bi, with m 2 {1,2, . . . ,N}, denote the state of the chain where
the electron is on unit cell m, in the site on sublattice A, respectively, B, and h.c.
stands for Hermitian Conjugate (e.g., h.c. of |m,Bihm,A| is |m,Aihm,B|).

The spin degree of freedom is completely absent from the SSH model, since no
term in the Hamiltonian acts on spin. Thus, the SSH model describes spin-polarized
electrons, and when applying the model to a real physical system, e.g., polyacety-
lene, we have to always take two copies of it. In this chapter we will just consider a
single copy, and call the particles fermions, or electrons, or just particles.

We are interested in the dynamics of fermions in and around the ground state of
the SSH model at zero temperature and zero chemical potential, where all negative
energy eigenstates of the Hamiltonian are singly occupied (because of the Pauli
principle). As we will show later, due to the absence of onsite potential terms, there
are N such occupied states. This situation – called half filling – is characteristic of
the simplest insulators such as polyacetylene, where each carbon atom brings one
conduction electron, and so we find 1 particle (of each spin type) per unit cell.

For simplicity, we take the hopping amplitudes to be real and nonnegative, v,w �
0. If this was not the case, if they carried phases, v = |v|eifv , and w = |w|eifw , with
fv,fw 2 [0,p), these phases could always be gauged away. This is done by a redefini-
tion of the basis states: |m,Ai! e�i(m�1)(fv+fw), and |m,Bi! e�ifve�i(m�1)(fv+fw).

The matrix for the Hamiltonian of the SSH model, Eq. (1.1), on a real-space
basis, for a chain of N = 4 unit cells, reads

H =

0BBBBBBBBBB@

0 v 0 0 0 0 0 0
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0
0 0 0 w 0 v 0 0
0 0 0 0 v 0 w 0
0 0 0 0 0 w 0 v
0 0 0 0 0 0 v 0

1CCCCCCCCCCA
. (1.2)

External and internal degrees of freedom

There is a practical representation of this Hamiltonian, which emphasizes the sep-
aration of the external degrees of freedom (unit cell index m) from the internal de-
grees of freedom (sublattice index). We can use a tensor product basis,

|m,ai ! |mi⌦ |ai 2 Hexternal ⌦Hinternal, (1.3)

with m = 1, . . . ,N, and a 2 {A,B}. On this basis, with the Pauli matrices,

s0 =

✓
1 0
0 1

◆
; sx =

✓
0 1
1 0

◆
; sy =

✓
0 �i
i 0

◆
; sz =

✓
1 0
0 �1

◆
, (1.4)

the Hamiltonian can be written

Real-space tight-binding SSH Hamiltonian: For N=4:

intracell hopping intercell hopping
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Let’s see a few examples, how these maps look like, for a few chosen values of the hopping parameters v and w.
Actually, in these figures, I’m showing two things. In the first row, I’m showing the dispersion relation, which is
simply the absolute value of the f function appearing in the o↵-diagonal matrix element of the k-space Hamiltonian.
In the second row, I’m showing the image of the brillouin zone produced by the function f, which, as we discussed
before maps each point of the unit circle to a point on the complex plane. As we move from left to right on this plots,
the relative values of the two hopping parameters v and w are changed. Let’s look at the dispersion relations or band
structures first. We see that if the two hopping parameters are di↵erent, then there is a nonzero energy gap between
the valence band and the conduction band. Since each atom provides a single electron to these states, and the number
of states in each band is the same as the number of atoms, we know that all valence band states are filled and all
conduction band states are empty at zero temperature. That implies that figures a,b,d and e describe insulators. The
only exception is figure c, which shows the case when the two hopping parameters are equal; in this case, there is
no energy gap, and thereby this system is not an insulator but a metal. The fact that this is a metal can also be
deduced from figure h, which shows the image of the brillouin zone via the function f when v and w are equal. As
you see, the image contains the origin: that means that there is a certain wave number value, actually, k=pi, where
this f function is zero, and therefore the energies of the valence and conduction bands are degenerate. But this talk
is about topological insulators, and therefore in what follows I’d like to restrict my attention to insulators, so I will
disregard those points in the parameter space where v equals w. The means that I focus on SSH hamiltonians where
the image of the BZ via the function f does not include the origin of the complex plane.

k
�⇡

a
lattice constant a
SSH parameter space is partitioned to two topologically non-equivalent segments.
Zero intracell hopping ensures the existence of one zero-energy bound state at each edge of a finite SSH chain.
SSH Hamiltonians have chiral symmetry.
Chiral symmetry ensures the existence of zero-energy edge states in a long topological SSH chain.
Chiral symmetry ensures robustness of zero-energy edge states against disorder
SSH is one creature in the zoo of topological insulators
What is topology? Generally speaking, it is the branch of mathematics that aims at classifying geometrical objects:

two objects belong to the same topological class, if they can be continuously deformed to each other. If two objects
belong to the same topological class, then this is also often expressed by saying that these two objects are ”topologically
equivalent”. In order to keep the discussion simple, and also because I do not have a strong background in mathematics,
I will not use formal definitions and statements here, but I will try to illustrate the relevant concepts using elementary
examples.

A central concept in topology is the topological space. Take an example: the two-dimensional plane without the
origin. I’ll call this the ”punctured plane”, to indicate that the origin is excluded. A second example is this closed
loop, called loop A, which is embedded in the punctured plane, and does not enclose the origin. The third example is
this closed loop, called loop B, which is also embedded in the punctured plane, but this one encircles the origin. All
these objects, the punctured plane, loop A, and loop B, are topological spaces.

A reasonable question at this point is the following. Is loop A topologically equivalent to loop B? To answer this
question, one should specify what ”topological equivalence” means. One possible definition: I call them topologically
equivalent, if I can define a continuous function that maps loop A to loop B, and its inverse maps loop B to loop A. If
I use this definition, then I conclude that loop A is topologically equivalent with loop B. Another possible definition:
I call them topologically equivalent, if I can continuously deform loop A on the punctured plane such that I end up
with loop B. Clearly, I cannot do that, so I conclude that loop is not topologically equivalent with loop B.

These two di↵erent types of topological equivalence are captured by the concepts of homeomorphic equivalence and
homotopic equivalence. For this talk, we should care about the second one, homotopic equivalence. If I take this
definition, then the next question is the following. I can see with my eyes that these loop A and loop B

ssh model: picture, real-space hamiltonian, momentum-space hamiltonian, spectrum, gap;
to describe an insulator, the v = w line should be avoided
notice that the momentum-space hamiltonian is a map from the unit circle to the punctured plane, and it either

does not encircle the origin, or encircles it once. winding number 0,1 bulk has trivial/nontrivial topology. bulk is
trivial/topological bulk phase diagram

Appendix A: Formal definitions in topology, with examples relevant for topological insulators

Topological space.



k-space Hamiltonian maps unit circle to complex plane
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|
Yn(k)i= |ki⌦ |un(k)i ; |un(k)i= an(k) |Ai+bn(k) |Bi . (1.9)

The vectors |un(k)i 2 Hinternal are eigenstates of the bulk momentum-space Hamil-
tonian Ĥ(k) defined as

Ĥ(k) = hk| Ĥbulk |ki= Â
a,b2{A,B}

hk,a|Hbulk |k,b i · |aih
b

| ; (1.10)

Ĥ(k) |un(k)i= En(k) |un(k)i . (1.11)

Periodicity in wavenumber

Although Eq. (1.9) has a lot to do with the continous-variable Bloch theorem,
Yn,k(x) = eikxun,k(x), this correspondence is not direct. In a discretization of the
continuous-variable Bloch theorem, the internal degree of freedom would play the
role of the coordinate within the unit cell, which is also transformed by the Fourier
transform. Thus, the function un,k(x) cell-periodic, un,k(x+1) = un,k(x), but not pe-
riodic in the Brillouin zone, un,k+2p

(x+ 1) 6= un,k(x). Our Fourier transform acts
only on the external degree of freedom, and as a result, we have periodicity in the
Brillouin zone,

Ĥ(k+2p) = Ĥ(k); |un(k+2p)i= |un(k)i . (1.12)

This convention simplifies the formulas for the topological invariants immensely.
Note, however, that the other convention, the discretization of the Bloch theorem, is
also widely used in the literature. We compare the two approaches in Appendix ??.

As an example, for the SSH model on a chain of N = 4 unit cells, the Schrödinger
equation, Eq. (1.7), using Eq. (1.9), translates to a matrix eigenvalue equation,0BBBBBBBBBB@

0 v 0 0 0 0 0 w
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0
0 0 0 w 0 v 0 0
0 0 0 0 v 0 w 0
0 0 0 0 0 w 0 v
w 0 0 0 0 0 v 0

1CCCCCCCCCCA

0BBBBBBBBBB@

a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

a(k)e3ik

b(k)e3ik

a(k)eNik

b(k)eNik

1CCCCCCCCCCA
= E(k)

0BBBBBBBBBB@

a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

a(k)e3ik

b(k)e3ik

a(k)eNik

b(k)eNik

1CCCCCCCCCCA
. (1.13)

The Schrödinger equation defining the matrix H(k) of the bulk momentum-space
Hamiltonian reads

H(k) =
✓

0 v+we�ik

v+weik 0

◆
; H(k)

✓
a(k)
b(k)

◆
= E(k)

✓
a(k)
b(k)

◆
. (1.14)
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only exception is figure c, which shows the case when the two hopping parameters are equal; in this case, there is
no energy gap, and thereby this system is not an insulator but a metal. The fact that this is a metal can also be
deduced from figure h, which shows the image of the brillouin zone via the function f when v and w are equal. As
you see, the image contains the origin: that means that there is a certain wave number value, actually, k=pi, where
this f function is zero, and therefore the energies of the valence and conduction bands are degenerate. But this talk
is about topological insulators, and therefore in what follows I’d like to restrict my attention to insulators, so I will
disregard those points in the parameter space where v equals w. The means that I focus on SSH hamiltonians where
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two objects belong to the same topological class, if they can be continuously deformed to each other. If two objects
belong to the same topological class, then this is also often expressed by saying that these two objects are ”topologically
equivalent”. In order to keep the discussion simple, and also because I do not have a strong background in mathematics,
I will not use formal definitions and statements here, but I will try to illustrate the relevant concepts using elementary
examples.

A central concept in topology is the topological space. Take an example: the two-dimensional plane without the
origin. I’ll call this the ”punctured plane”, to indicate that the origin is excluded. A second example is this closed
loop, called loop A, which is embedded in the punctured plane, and does not enclose the origin. The third example is
this closed loop, called loop B, which is also embedded in the punctured plane, but this one encircles the origin. All
these objects, the punctured plane, loop A, and loop B, are topological spaces.

A reasonable question at this point is the following. Is loop A topologically equivalent to loop B? To answer this
question, one should specify what ”topological equivalence” means. One possible definition: I call them topologically
equivalent, if I can define a continuous function that maps loop A to loop B, and its inverse maps loop B to loop A. If
I use this definition, then I conclude that loop A is topologically equivalent with loop B. Another possible definition:
I call them topologically equivalent, if I can continuously deform loop A on the punctured plane such that I end up
with loop B. Clearly, I cannot do that, so I conclude that loop is not topologically equivalent with loop B.

These two di↵erent types of topological equivalence are captured by the concepts of homeomorphic equivalence and
homotopic equivalence. For this talk, we should care about the second one, homotopic equivalence. If I take this
definition, then the next question is the following. I can see with my eyes that these loop A and loop B

ssh model: picture, real-space hamiltonian, momentum-space hamiltonian, spectrum, gap;
to describe an insulator, the v = w line should be avoided
notice that the momentum-space hamiltonian is a map from the unit circle to the punctured plane, and it either

does not encircle the origin, or encircles it once. winding number 0,1 bulk has trivial/nontrivial topology. bulk is
trivial/topological bulk phase diagram
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A reasonable question at this point is the following. Is loop A topologically equivalent to loop B? To answer this
question, one should specify what ”topological equivalence” means. One possible definition: I call them topologically
equivalent, if I can define a continuous function that maps loop A to loop B, and its inverse maps loop B to loop A. If
I use this definition, then I conclude that loop A is topologically equivalent with loop B. Another possible definition:
I call them topologically equivalent, if I can continuously deform loop A on the punctured plane such that I end up
with loop B. Clearly, I cannot do that, so I conclude that loop is not topologically equivalent with loop B.

These two di↵erent types of topological equivalence are captured by the concepts of homeomorphic equivalence and
homotopic equivalence. For this talk, we should care about the second one, homotopic equivalence. If I take this
definition, then the next question is the following. I can see with my eyes that these loop A and loop B
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Appendix A: Formal definitions in topology, with examples relevant for topological insulators

Topological space.
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Two insulating SSH Hamiltonians can be homotopy equivalent.

Let’s see a few examples, how these maps look like, for a few chosen values of the hopping parameters v and w.
Actually, in these figures, I’m showing two things. In the first row, I’m showing the dispersion relation, which is
simply the absolute value of the f function appearing in the o↵-diagonal matrix element of the k-space Hamiltonian.
In the second row, I’m showing the image of the brillouin zone produced by the function f, which, as we discussed
before maps each point of the unit circle to a point on the complex plane. As we move from left to right on this plots,
the relative values of the two hopping parameters v and w are changed. Let’s look at the dispersion relations or band
structures first. We see that if the two hopping parameters are di↵erent, then there is a nonzero energy gap between
the valence band and the conduction band. Since each atom provides a single electron to these states, and the number
of states in each band is the same as the number of atoms, we know that all valence band states are filled and all
conduction band states are empty at zero temperature. That implies that figures a,b,d and e describe insulators. The
only exception is figure c, which shows the case when the two hopping parameters are equal; in this case, there is
no energy gap, and thereby this system is not an insulator but a metal. The fact that this is a metal can also be
deduced from figure h, which shows the image of the brillouin zone via the function f when v and w are equal. As
you see, the image contains the origin: that means that there is a certain wave number value, actually, k=pi, where
this f function is zero, and therefore the energies of the valence and conduction bands are degenerate. But this talk
is about topological insulators, and therefore in what follows I’d like to restrict my attention to insulators, so I will
disregard those points in the parameter space where v equals w. The means that I focus on SSH hamiltonians where
the image of the BZ via the function f does not include the origin of the complex plane.

SSH parameter space is partitioned to two topologically non-equivalent segments.

Zero intracell hopping ensures the existence of one zero-energy bound state at each edge of a finite SSH chain.

SSH Hamiltonians have chiral symmetry.

Chiral symmetry ensures the existence of zero-energy edge states in a long topological SSH chain.

Chiral symmetry ensures robustness of zero-energy edge states against disorder

SSH is one creature in the zoo of topological insulators

What is topology? Generally speaking, it is the branch of mathematics that aims at classifying geometrical objects:
two objects belong to the same topological class, if they can be continuously deformed to each other. If two objects
belong to the same topological class, then this is also often expressed by saying that these two objects are ”topologically
equivalent”. In order to keep the discussion simple, and also because I do not have a strong background in mathematics,
I will not use formal definitions and statements here, but I will try to illustrate the relevant concepts using elementary
examples.

A central concept in topology is the topological space. Take an example: the two-dimensional plane without the
origin. I’ll call this the ”punctured plane”, to indicate that the origin is excluded. A second example is this closed
loop, called loop A, which is embedded in the punctured plane, and does not enclose the origin. The third example is
this closed loop, called loop B, which is also embedded in the punctured plane, but this one encircles the origin. All
these objects, the punctured plane, loop A, and loop B, are topological spaces.

A reasonable question at this point is the following. Is loop A topologically equivalent to loop B? To answer this
question, one should specify what ”topological equivalence” means. One possible definition: I call them topologically
equivalent, if I can define a continuous function that maps loop A to loop B, and its inverse maps loop B to loop A. If
I use this definition, then I conclude that loop A is topologically equivalent with loop B. Another possible definition:
I call them topologically equivalent, if I can continuously deform loop A on the punctured plane such that I end up
with loop B. Clearly, I cannot do that, so I conclude that loop is not topologically equivalent with loop B.

These two di↵erent types of topological equivalence are captured by the concepts of homeomorphic equivalence and
homotopic equivalence. For this talk, we should care about the second one, homotopic equivalence. If I take this
definition, then the next question is the following. I can see with my eyes that these loop A and loop B
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Brillouin zone of a 1D crystal is equivalent to the unit circle:

2

�⇡
a

⇡
a
lattice constant a
⌘

fv,w : unit circle ! C, k 7! v + we�ik (1)

Two insulating SSH Hamiltonians can be homotopy equivalent.
Let’s see a few examples, how these maps look like, for a few chosen values of the hopping parameters v and w.

Actually, in these figures, I’m showing two things. In the first row, I’m showing the dispersion relation, which is
simply the absolute value of the f function appearing in the o↵-diagonal matrix element of the k-space Hamiltonian.
In the second row, I’m showing the image of the brillouin zone produced by the function f, which, as we discussed
before maps each point of the unit circle to a point on the complex plane. As we move from left to right on this plots,
the relative values of the two hopping parameters v and w are changed. Let’s look at the dispersion relations or band
structures first. We see that if the two hopping parameters are di↵erent, then there is a nonzero energy gap between
the valence band and the conduction band. Since each atom provides a single electron to these states, and the number
of states in each band is the same as the number of atoms, we know that all valence band states are filled and all
conduction band states are empty at zero temperature. That implies that figures a,b,d and e describe insulators. The
only exception is figure c, which shows the case when the two hopping parameters are equal; in this case, there is
no energy gap, and thereby this system is not an insulator but a metal. The fact that this is a metal can also be
deduced from figure h, which shows the image of the brillouin zone via the function f when v and w are equal. As
you see, the image contains the origin: that means that there is a certain wave number value, actually, k=pi, where
this f function is zero, and therefore the energies of the valence and conduction bands are degenerate. But this talk
is about topological insulators, and therefore in what follows I’d like to restrict my attention to insulators, so I will
disregard those points in the parameter space where v equals w. The means that I focus on SSH hamiltonians where
the image of the BZ via the function f does not include the origin of the complex plane.

SSH parameter space is partitioned to two topologically non-equivalent segments.
Zero intracell hopping ensures the existence of one zero-energy bound state at each edge of a finite SSH chain.
SSH Hamiltonians have chiral symmetry.
Chiral symmetry ensures the existence of zero-energy edge states in a long topological SSH chain.
Chiral symmetry ensures robustness of zero-energy edge states against disorder
SSH is one creature in the zoo of topological insulators
What is topology? Generally speaking, it is the branch of mathematics that aims at classifying geometrical objects:

two objects belong to the same topological class, if they can be continuously deformed to each other. If two objects
belong to the same topological class, then this is also often expressed by saying that these two objects are ”topologically
equivalent”. In order to keep the discussion simple, and also because I do not have a strong background in mathematics,
I will not use formal definitions and statements here, but I will try to illustrate the relevant concepts using elementary
examples.

A central concept in topology is the topological space. Take an example: the two-dimensional plane without the
origin. I’ll call this the ”punctured plane”, to indicate that the origin is excluded. A second example is this closed
loop, called loop A, which is embedded in the punctured plane, and does not enclose the origin. The third example is
this closed loop, called loop B, which is also embedded in the punctured plane, but this one encircles the origin. All
these objects, the punctured plane, loop A, and loop B, are topological spaces.

A reasonable question at this point is the following. Is loop A topologically equivalent to loop B? To answer this
question, one should specify what ”topological equivalence” means. One possible definition: I call them topologically
equivalent, if I can define a continuous function that maps loop A to loop B, and its inverse maps loop B to loop A. If
I use this definition, then I conclude that loop A is topologically equivalent with loop B. Another possible definition:
I call them topologically equivalent, if I can continuously deform loop A on the punctured plane such that I end up
with loop B. Clearly, I cannot do that, so I conclude that loop is not topologically equivalent with loop B.

These two di↵erent types of topological equivalence are captured by the concepts of homeomorphic equivalence and
homotopic equivalence. For this talk, we should care about the second one, homotopic equivalence. If I take this
definition, then the next question is the following. I can see with my eyes that these loop A and loop B
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does not encircle the origin, or encircles it once. winding number 0,1 bulk has trivial/nontrivial topology. bulk is
trivial/topological bulk phase diagram



An insulating SSH Hamiltonian has a topological invariant

4 1 The Su-Schrieffer-Heeger (SSH) model

|
Yn(k)i= |ki⌦ |un(k)i ; |un(k)i= an(k) |Ai+bn(k) |Bi . (1.9)

The vectors |un(k)i 2 Hinternal are eigenstates of the bulk momentum-space Hamil-
tonian Ĥ(k) defined as

Ĥ(k) = hk| Ĥbulk |ki= Â
a,b2{A,B}

hk,a|Hbulk |k,b i · |aih
b

| ; (1.10)

Ĥ(k) |un(k)i= En(k) |un(k)i . (1.11)

Periodicity in wavenumber

Although Eq. (1.9) has a lot to do with the continous-variable Bloch theorem,
Yn,k(x) = eikxun,k(x), this correspondence is not direct. In a discretization of the
continuous-variable Bloch theorem, the internal degree of freedom would play the
role of the coordinate within the unit cell, which is also transformed by the Fourier
transform. Thus, the function un,k(x) cell-periodic, un,k(x+1) = un,k(x), but not pe-
riodic in the Brillouin zone, un,k+2p

(x+ 1) 6= un,k(x). Our Fourier transform acts
only on the external degree of freedom, and as a result, we have periodicity in the
Brillouin zone,

Ĥ(k+2p) = Ĥ(k); |un(k+2p)i= |un(k)i . (1.12)

This convention simplifies the formulas for the topological invariants immensely.
Note, however, that the other convention, the discretization of the Bloch theorem, is
also widely used in the literature. We compare the two approaches in Appendix ??.

As an example, for the SSH model on a chain of N = 4 unit cells, the Schrödinger
equation, Eq. (1.7), using Eq. (1.9), translates to a matrix eigenvalue equation,0BBBBBBBBBB@

0 v 0 0 0 0 0 w
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0
0 0 0 w 0 v 0 0
0 0 0 0 v 0 w 0
0 0 0 0 0 w 0 v
w 0 0 0 0 0 v 0

1CCCCCCCCCCA

0BBBBBBBBBB@

a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

a(k)e3ik

b(k)e3ik

a(k)eNik

b(k)eNik

1CCCCCCCCCCA
= E(k)

0BBBBBBBBBB@

a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

a(k)e3ik

b(k)e3ik

a(k)eNik

b(k)eNik

1CCCCCCCCCCA
. (1.13)

The Schrödinger equation defining the matrix H(k) of the bulk momentum-space
Hamiltonian reads

H(k) =
✓

0 v+we�ik

v+weik 0

◆
; H(k)

✓
a(k)
b(k)

◆
= E(k)

✓
a(k)
b(k)

◆
. (1.14)

k-space SSH Hamiltonian:
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Two insulating SSH Hamiltonians can be homotopy equivalent.
Let’s see a few examples, how these maps look like, for a few chosen values of the hopping parameters v and w.

Actually, in these figures, I’m showing two things. In the first row, I’m showing the dispersion relation, which is
simply the absolute value of the f function appearing in the o↵-diagonal matrix element of the k-space Hamiltonian.
In the second row, I’m showing the image of the brillouin zone produced by the function f, which, as we discussed
before maps each point of the unit circle to a point on the complex plane. As we move from left to right on this plots,
the relative values of the two hopping parameters v and w are changed. Let’s look at the dispersion relations or band
structures first. We see that if the two hopping parameters are di↵erent, then there is a nonzero energy gap between
the valence band and the conduction band. Since each atom provides a single electron to these states, and the number
of states in each band is the same as the number of atoms, we know that all valence band states are filled and all
conduction band states are empty at zero temperature. That implies that figures a,b,d and e describe insulators. The
only exception is figure c, which shows the case when the two hopping parameters are equal; in this case, there is
no energy gap, and thereby this system is not an insulator but a metal. The fact that this is a metal can also be
deduced from figure h, which shows the image of the brillouin zone via the function f when v and w are equal. As
you see, the image contains the origin: that means that there is a certain wave number value, actually, k=pi, where
this f function is zero, and therefore the energies of the valence and conduction bands are degenerate. But this talk
is about topological insulators, and therefore in what follows I’d like to restrict my attention to insulators, so I will
disregard those points in the parameter space where v equals w. The means that I focus on SSH hamiltonians where
the image of the BZ via the function f does not include the origin of the complex plane.

E(k) = ±|fv,w(k)| = ±|v + we�ik| = ±
p
v2 + w2 + 2vw cos(k) (2)

SSH parameter space is partitioned to two topologically non-equivalent segments.
Zero intracell hopping ensures the existence of one zero-energy bound state at each edge of a finite SSH chain.
SSH Hamiltonians have chiral symmetry.
Chiral symmetry ensures the existence of zero-energy edge states in a long topological SSH chain.
Chiral symmetry ensures robustness of zero-energy edge states against disorder
SSH is one creature in the zoo of topological insulators
What is topology? Generally speaking, it is the branch of mathematics that aims at classifying geometrical objects:

two objects belong to the same topological class, if they can be continuously deformed to each other. If two objects
belong to the same topological class, then this is also often expressed by saying that these two objects are ”topologically
equivalent”. In order to keep the discussion simple, and also because I do not have a strong background in mathematics,
I will not use formal definitions and statements here, but I will try to illustrate the relevant concepts using elementary
examples.

A central concept in topology is the topological space. Take an example: the two-dimensional plane without the
origin. I’ll call this the ”punctured plane”, to indicate that the origin is excluded. A second example is this closed
loop, called loop A, which is embedded in the punctured plane, and does not enclose the origin. The third example is
this closed loop, called loop B, which is also embedded in the punctured plane, but this one encircles the origin. All
these objects, the punctured plane, loop A, and loop B, are topological spaces.

A reasonable question at this point is the following. Is loop A topologically equivalent to loop B? To answer this
question, one should specify what ”topological equivalence” means. One possible definition: I call them topologically
equivalent, if I can define a continuous function that maps loop A to loop B, and its inverse maps loop B to loop A. If
I use this definition, then I conclude that loop A is topologically equivalent with loop B. Another possible definition:
I call them topologically equivalent, if I can continuously deform loop A on the punctured plane such that I end up
with loop B. Clearly, I cannot do that, so I conclude that loop is not topologically equivalent with loop B.

These two di↵erent types of topological equivalence are captured by the concepts of homeomorphic equivalence and
homotopic equivalence. For this talk, we should care about the second one, homotopic equivalence. If I take this
definition, then the next question is the following. I can see with my eyes that these loop A and loop B

ssh model: picture, real-space hamiltonian, momentum-space hamiltonian, spectrum, gap;
to describe an insulator, the v = w line should be avoided

band structure, valence (-) and conduction (+) bands:

1.2 Bulk Hamiltonian 5

1.2.1 The hopping is staggered to open a gap

The dispersion relation of the bulk can be read off from Eq. (1.14), using the fact
that Ĥ(k)2 = E(k)2Î2. This gives us

E(k) =
���v+ e�ikw

���=p
v2 +w2 +2vwcosk. (1.15)

We show this dispersion relation for five choices of the parameters in Fig. 1.2.

Fig. 1.2 Dispersion relations of the SSH model, Eq. (1.15), for five settings of the hopping ampli-
tudes: (a): v = 1,w = 0; (b): v = 1,w = 0.6; (c): v = w = 1; (d): v = 0.6,w = 1; (e): v = 0,w = 1.
In each case, the path of the endpoints of the vector d(k) representing the bulk momentum-space
Hamiltonian, Eqs. (1.17) and (1.18), are also shown on the dx,dy plane, as the wavenumber is
sweeped across the Brillouin zone, k = 0 ! 2p . .

As long as the hopping amplitudes are staggered, v 6= w, (Figs. 1.2 (a),(b),(d),(e),
there is an energy gap of 2D separating the lower, filled band, from the upper, empty
band, with

D = minkE(k) = |v�w| . (1.16)

Without the staggering, i.e., if v = w, (Fig. 1.2 (c), the SSH model describes a con-
ductor. In that case there are plane wave eigenstates of the bulk available with arbi-
trarily small energy, which can transport electrons from one end of the chain to the
other.

The staggering of the hopping amplitudes occurs naturally in many solid state
systems, e.g., polyacetylene, by what is known as the Peierls instability. A detailed
analysis of this process neccesitates a model where the positions of the atoms are
also dynamical[32]. Nevertheless, we can understand this process intuitively just
from the effects of a slight staggering on the dispersion relation. As the gap due
to the staggering of the hopping amplitudes opens, the energy of occupied states is
lowered, while unoccupied states move to higher energies. Thus, the staggering is
energetically favourable.

insulator insulator metal insulator insulator
winding 
number 0 0 1 1



SSH parameter space has two topological phases

16 1 The Su-Schrieffer-Heeger (SSH) model

invariant: 1) it is only well defined in the thermodynamic limit, 2) it depends on the
symmetries that need to be respected. An example for a topological invariant is the
winding number n of the SSH model.

We know that two insulating Hamiltonians are not adiabatically equivalent if their
topological invariants differ. Consider as an example two Hamiltonians correspond-
ing to two points on different sides of the phase boundary in Fig. 1.7 of the SSH
model. One might think that although there is no continous path connecting them in
the phase diagram, continuously modifying the bulk Hamiltonian by the addition of
extra terms can lead to a connection between them. However, their winding numbers
differ, and since winding numbers cannot change under adiabatic deformation, we
know that they are not adiabatically equivalent.

Number of edge states as a topological invariant

We have seen in Sect. 1.3.2, that the number of edge states at one end of the SSH
model was an integer that did not change under a specific type of adiabatic defor-
mation. We now generalize this example.

Consider energy eigenstates at the left end of a gapped chiral symmetric one-
dimensional Hamiltonian in the thermodynamic limit, i.e., with length N ! •, in
an energy window from �e < E < e , with e in the bulk gap. There can be nonzero
energy edge states in this energy window, and zero energy edge states as well. Each
nonzero energy state has to have a chiral symmetric partner, with the state and its
partner occupying the same unit cells (the chiral symmetry operator is a local uni-
tary). The number of zero energy states is finite (because of the gap in the bulk), and
they can be restricted to a single sublattice each. There are NA zero energy states on
sublattice A, and NB states on sublattice B.

Fig. 1.7 Phase diagram of
the SSH model. The wind-
ing number of the bulk
momentum-space Hamil-
tonian Ĥ(k) can be n = 0,
if v > w, or n = 1, if v < w.
This defines the trivial (gray)
and the topological phase
(white). The boundary sep-
arating these phases (black
solid line), corresponds to
v = w, where the bulk gap
closes at some k. Two Hamil-
tonians in the same phase are
adiabatically connected.

winding # = 1

winding # = 0



Part 1 
Introduction to topological insulators

If the bulk has nontrivial topology, !
then the edge has disorder-resistant bound states!

(‘bulk-boundary correspondence’)



Zero intracell hopping implies zero-energy states at edges

1.3 Edge states 7

1.3.1 Fully dimerized limits

The SSH model becomes particularly simple in the two fully dimerized cases: if the
intercell hopping amplitude vanishes and the intracell hopping is set to 1, v = 1,w =
0, or vice versa, v = 0,w = 1. In both cases the SSH chain falls apart to a sequence
of disconnected dimers, as shown in Fig. 1.3.

Fig. 1.3 Fully dimerized limits of the SSH model, where the chain has fallen apart to disconnected
dimers. In the trivial case (top, only intracell hopping, v = 1,w = 0), every energy eigenstate is an
even or an odd superposition of two sites at the same unit cell. In the topological case, (bottom,
only intercell hopping, v = 0,w = 1), dimers are between neighboring unit cells, and there is 1
isolated site per edge, that must contain one zero-energy eigenstate each, as there are no onsite
potentials. .

The bulk in the fully dimerized limits has flat bands

In the fully dimerized limit, one can choose a set of energy eigenstates which are
restricted to one dimer each. These consist of the even (energy E = +1) and odd
(energy E =�1) superpositions of the two sites forming a dimer.

In the v = 1,w = 0 case, which we call trivial, we have

v = 1,w = 0 : Ĥ(|m,Ai±|m,Bi) =±(|m,Ai±|m,Bi). (1.19)

The bulk momentum-space Hamiltonian is Ĥ(k)= ŝx, independent of the wavenum-
ber k.

In the v = 0,w = 1 case, which we call topological, each dimer is shared between
two neighboring unit cells,

v = 0,w = 1 : Ĥ(|m,Bi±|m+1,Ai) =±(|m,Bi±|m+1,Ai), (1.20)

for m = 1, . . . ,N � 1. The bulk momentum-space Hamiltonian now is Ĥ(k) =
ŝx cosk+ ŝy sink.

In both fully dimerized limits, the energy eigenvalues are independent of the
wavenumber, E(k) = 1. In this so-called flat-band limit, the group velocity is zero,
which again shows that as the chain falls apart to dimers, a particle input into the
bulk will not spread along the chain.

Fully dimerized limits of the SSH Hamiltonian:

trivial 
v = 1, w = 0

topological 
v = 0, w = 1

energy

1

0
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SSH Hamiltonians have chiral symmetry
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Two insulating SSH Hamiltonians can be homotopy equivalent.
Let’s see a few examples, how these maps look like, for a few chosen values of the hopping parameters v and w.

Actually, in these figures, I’m showing two things. In the first row, I’m showing the dispersion relation, which is
simply the absolute value of the f function appearing in the o↵-diagonal matrix element of the k-space Hamiltonian.
In the second row, I’m showing the image of the brillouin zone produced by the function f, which, as we discussed
before maps each point of the unit circle to a point on the complex plane. As we move from left to right on this plots,
the relative values of the two hopping parameters v and w are changed. Let’s look at the dispersion relations or band
structures first. We see that if the two hopping parameters are di↵erent, then there is a nonzero energy gap between
the valence band and the conduction band. Since each atom provides a single electron to these states, and the number
of states in each band is the same as the number of atoms, we know that all valence band states are filled and all
conduction band states are empty at zero temperature. That implies that figures a,b,d and e describe insulators. The
only exception is figure c, which shows the case when the two hopping parameters are equal; in this case, there is
no energy gap, and thereby this system is not an insulator but a metal. The fact that this is a metal can also be
deduced from figure h, which shows the image of the brillouin zone via the function f when v and w are equal. As
you see, the image contains the origin: that means that there is a certain wave number value, actually, k=pi, where
this f function is zero, and therefore the energies of the valence and conduction bands are degenerate. But this talk
is about topological insulators, and therefore in what follows I’d like to restrict my attention to insulators, so I will
disregard those points in the parameter space where v equals w. The means that I focus on SSH hamiltonians where
the image of the BZ via the function f does not include the origin of the complex plane.

E(k) = ±|fv,w(k)| = ±|v + we�ik| = ±
p
v2 + w2 + 2vw cos(k) (2)

SSH parameter space is partitioned to two topologically non-equivalent segments.
Zero intracell hopping ensures the existence of one zero-energy bound state at each edge of a finite SSH chain.
SSH Hamiltonians have chiral symmetry.
Definition: a � local unitary operator is a chiral symmetry if �H� = �H

� =

0
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1 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 �1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 �1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 �1
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Chiral symmetry ensures the existence of zero-energy edge states in a long topological SSH chain.
Chiral symmetry ensures robustness of zero-energy edge states against disorder
SSH is one creature in the zoo of topological insulators
What is topology? Generally speaking, it is the branch of mathematics that aims at classifying geometrical objects:

two objects belong to the same topological class, if they can be continuously deformed to each other. If two objects
belong to the same topological class, then this is also often expressed by saying that these two objects are ”topologically
equivalent”. In order to keep the discussion simple, and also because I do not have a strong background in mathematics,
I will not use formal definitions and statements here, but I will try to illustrate the relevant concepts using elementary
examples.

A central concept in topology is the topological space. Take an example: the two-dimensional plane without the
origin. I’ll call this the ”punctured plane”, to indicate that the origin is excluded. A second example is this closed
loop, called loop A, which is embedded in the punctured plane, and does not enclose the origin. The third example is
this closed loop, called loop B, which is also embedded in the punctured plane, but this one encircles the origin. All
these objects, the punctured plane, loop A, and loop B, are topological spaces.

2 1 The Su-Schrieffer-Heeger (SSH) model

Here |m,Ai and |m,Bi, with m 2 {1,2, . . . ,N}, denote the state of the chain where
the electron is on unit cell m, in the site on sublattice A, respectively, B, and h.c.
stands for Hermitian Conjugate (e.g., h.c. of |m,Bihm,A| is |m,Aihm,B|).

The spin degree of freedom is completely absent from the SSH model, since no
term in the Hamiltonian acts on spin. Thus, the SSH model describes spin-polarized
electrons, and when applying the model to a real physical system, e.g., polyacety-
lene, we have to always take two copies of it. In this chapter we will just consider a
single copy, and call the particles fermions, or electrons, or just particles.

We are interested in the dynamics of fermions in and around the ground state of
the SSH model at zero temperature and zero chemical potential, where all negative
energy eigenstates of the Hamiltonian are singly occupied (because of the Pauli
principle). As we will show later, due to the absence of onsite potential terms, there
are N such occupied states. This situation – called half filling – is characteristic of
the simplest insulators such as polyacetylene, where each carbon atom brings one
conduction electron, and so we find 1 particle (of each spin type) per unit cell.

For simplicity, we take the hopping amplitudes to be real and nonnegative, v,w �
0. If this was not the case, if they carried phases, v = |v|eifv , and w = |w|eifw , with
fv,fw 2 [0,p), these phases could always be gauged away. This is done by a redefini-
tion of the basis states: |m,Ai! e�i(m�1)(fv+fw), and |m,Bi! e�ifve�i(m�1)(fv+fw).

The matrix for the Hamiltonian of the SSH model, Eq. (1.1), on a real-space
basis, for a chain of N = 4 unit cells, reads

H =

0BBBBBBBBBB@

0 v 0 0 0 0 0 0
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0
0 0 0 w 0 v 0 0
0 0 0 0 v 0 w 0
0 0 0 0 0 w 0 v
0 0 0 0 0 0 v 0

1CCCCCCCCCCA
. (1.2)

External and internal degrees of freedom

There is a practical representation of this Hamiltonian, which emphasizes the sep-
aration of the external degrees of freedom (unit cell index m) from the internal de-
grees of freedom (sublattice index). We can use a tensor product basis,

|m,ai ! |mi⌦ |ai 2 Hexternal ⌦Hinternal, (1.3)

with m = 1, . . . ,N, and a 2 {A,B}. On this basis, with the Pauli matrices,

s0 =

✓
1 0
0 1

◆
; sx =

✓
0 1
1 0

◆
; sy =

✓
0 �i
i 0

◆
; sz =

✓
1 0
0 �1

◆
, (1.4)

the Hamiltonian can be written

SSH Hamiltonians have chiral symmetry:

For example, N = 4:

2

�⇡
a

⇡
a
lattice constant a
⌘

fv,w : unit circle ! C, k 7! v + we�ik (1)

Two insulating SSH Hamiltonians can be homotopy equivalent.
Let’s see a few examples, how these maps look like, for a few chosen values of the hopping parameters v and w.

Actually, in these figures, I’m showing two things. In the first row, I’m showing the dispersion relation, which is
simply the absolute value of the f function appearing in the o↵-diagonal matrix element of the k-space Hamiltonian.
In the second row, I’m showing the image of the brillouin zone produced by the function f, which, as we discussed
before maps each point of the unit circle to a point on the complex plane. As we move from left to right on this plots,
the relative values of the two hopping parameters v and w are changed. Let’s look at the dispersion relations or band
structures first. We see that if the two hopping parameters are di↵erent, then there is a nonzero energy gap between
the valence band and the conduction band. Since each atom provides a single electron to these states, and the number
of states in each band is the same as the number of atoms, we know that all valence band states are filled and all
conduction band states are empty at zero temperature. That implies that figures a,b,d and e describe insulators. The
only exception is figure c, which shows the case when the two hopping parameters are equal; in this case, there is
no energy gap, and thereby this system is not an insulator but a metal. The fact that this is a metal can also be
deduced from figure h, which shows the image of the brillouin zone via the function f when v and w are equal. As
you see, the image contains the origin: that means that there is a certain wave number value, actually, k=pi, where
this f function is zero, and therefore the energies of the valence and conduction bands are degenerate. But this talk
is about topological insulators, and therefore in what follows I’d like to restrict my attention to insulators, so I will
disregard those points in the parameter space where v equals w. The means that I focus on SSH hamiltonians where
the image of the BZ via the function f does not include the origin of the complex plane.

E(k) = ±|fv,w(k)| = ±|v + we�ik| = ±
p
v2 + w2 + 2vw cos(k) (2)

SSH parameter space is partitioned to two topologically non-equivalent segments.
Zero intracell hopping ensures the existence of one zero-energy bound state at each edge of a finite SSH chain.
SSH Hamiltonians have chiral symmetry.
Definition: a � local unitary operator is a chiral symmetry if �H� = �H

� =

0

BBBBBBBBB@

1 0 0 0 0 0 0 0
0 �1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 �1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 �1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 �1

1

CCCCCCCCCA

(3)

Consequences of chiral symmetry

Up-down symmetric energy spectrum: H = E implies H(� ) = �E(� )
Finite-energy eigenstates have a ‘chiral partner’ at opposite energy
A zero-energy eigenstate might be its own chiral partner

Chiral symmetry ensures the existence of zero-energy edge states in a long topological SSH chain.
Chiral symmetry ensures robustness of zero-energy edge states against disorder
SSH is one creature in the zoo of topological insulators
What is topology? Generally speaking, it is the branch of mathematics that aims at classifying geometrical objects:

two objects belong to the same topological class, if they can be continuously deformed to each other. If two objects
belong to the same topological class, then this is also often expressed by saying that these two objects are ”topologically
equivalent”. In order to keep the discussion simple, and also because I do not have a strong background in mathematics,
I will not use formal definitions and statements here, but I will try to illustrate the relevant concepts using elementary
examples.

1.3 Edge states 7

1.3.1 Fully dimerized limits

The SSH model becomes particularly simple in the two fully dimerized cases: if the
intercell hopping amplitude vanishes and the intracell hopping is set to 1, v = 1,w =
0, or vice versa, v = 0,w = 1. In both cases the SSH chain falls apart to a sequence
of disconnected dimers, as shown in Fig. 1.3.

Fig. 1.3 Fully dimerized limits of the SSH model, where the chain has fallen apart to disconnected
dimers. In the trivial case (top, only intracell hopping, v = 1,w = 0), every energy eigenstate is an
even or an odd superposition of two sites at the same unit cell. In the topological case, (bottom,
only intercell hopping, v = 0,w = 1), dimers are between neighboring unit cells, and there is 1
isolated site per edge, that must contain one zero-energy eigenstate each, as there are no onsite
potentials. .

The bulk in the fully dimerized limits has flat bands

In the fully dimerized limit, one can choose a set of energy eigenstates which are
restricted to one dimer each. These consist of the even (energy E = +1) and odd
(energy E =�1) superpositions of the two sites forming a dimer.

In the v = 1,w = 0 case, which we call trivial, we have

v = 1,w = 0 : Ĥ(|m,Ai±|m,Bi) =±(|m,Ai±|m,Bi). (1.19)

The bulk momentum-space Hamiltonian is Ĥ(k)= ŝx, independent of the wavenum-
ber k.

In the v = 0,w = 1 case, which we call topological, each dimer is shared between
two neighboring unit cells,

v = 0,w = 1 : Ĥ(|m,Bi±|m+1,Ai) =±(|m,Bi±|m+1,Ai), (1.20)

for m = 1, . . . ,N � 1. The bulk momentum-space Hamiltonian now is Ĥ(k) =
ŝx cosk+ ŝy sink.

In both fully dimerized limits, the energy eigenvalues are independent of the
wavenumber, E(k) = 1. In this so-called flat-band limit, the group velocity is zero,
which again shows that as the chain falls apart to dimers, a particle input into the
bulk will not spread along the chain.

energy
1

0

-1

9x deg

9x deg

2x deg
Example: fully dimerized topological SSH chain
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Chiral symmetry implies edge states in topological SSH

8 1 The Su-Schrieffer-Heeger (SSH) model

The edges in the fully dimerized limit can host zero energy states

In the trivial case, v = 1,w = 0, all energy eigenstates of the SSH chain are given
by the formulas of the bulk, Eq. (1.19). A topological, fully dimerized SSH chain,
with v = 0,w = 1, however, has more energy eigenstates than those listed Eq. (1.20).
Each end of the chain hosts a single eigenstate at zero energy,

v = 0,w = 1 : Ĥ |1,Ai= Ĥ |N,Bi= 0. (1.21)

These eigenstates have support on one site only. Their energy is zero because onsite
potentials are not allowed in the SSH model. These are the simplest examples of
edge states.

1.3.2 Moving away from the fully dimerized limit

We now examine what happens to the edge states as we move away from the fully
dimerized limit. To be specific, we examine how the spectrum of an open topological
chain, v = 0,w = 1, of N = 10 unit cells changes, as we continuously turn on the
intracell hopping amplitude v. The spectra, Fig. 1.4, reveal that the energies of the
edge states remain very close to zero energy.

The wavefunctions of almost-zero-energy edge states have to be exponentially
localized at the left/right edge, because the zero of energy is in the bulk band gap. A
plot of the wavefunctions (which have only real components, since the Hamiltonian

Fig. 1.4 Energy spectrum and wave functions of a finite-sized SSH model. The number of unit
cells is N = 10. (a) Energy spectrum of the system for intercell hopping amplitude w = 1 as a
function the intracell hopping amplitude v. v < 1 (v > 1) corresponds to the topological (trivial)
phases. (b) and (c) shows the wave functions of the hybridized edge states, while (d) shows a
generic bulk wave function.

Take long fully dimerized topological SSH chain (v=0, w=1). 
Switch on a uniform intercell hopping v. 

Does the zero-energy edge state survive? 
It does: its energy sticks to zero due to chiral symmetry. 

The energy can leave zero only if the left and right edge states hybridize.

bulk-boundary correspondence



Edge states are robust against chiral-symmetric disorder
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SSH is one creature in the zoo of topological insulators

Table from A. W. W. Ludwig, Physica Scripta (2016)

17
CONTENTS 14

Cartan G/H d̄ = 0 d̄ = 1 d̄ = 2 d̄ = 3 d̄ = 4 d̄ = 5 d̄ = 6 d̄ = 7

Complex :

A U(N+M)/U(N)�U(M) � Z 0 �� Z 0 �� Z 0 �� Z 0 �
AIII U(N) 0 �� Z 0 �� Z 0 �� Z 0 �� Z

Real :

AI Sp(N+M)/Sp(N)�Sp(M) � Z 0 0 0 �� Z Z2 Z2 0 �
BDI U(2N)/Sp(2N) 0 �� Z 0 0 0 �� Z Z2 Z2

D O(2N)/U(N) Z2 0 �� Z 0 0 0 �� Z Z2

DIII O(N) Z2 Z2 0 �� Z 0 0 0 �� Z

AII O(N+M)/O(N)�O(M) � Z Z2 Z2 0 �� Z 0 0 0 �
CII U(N)/O(N) 0 �� Z Z2 Z2 0 �� Z 0 0

C Sp(2N)/U(N) 0 0 �� Z Z2 Z2 0 �� Z 0

CI Sp(2N) 0 0 0 �� Z Z2 Z2 0 �� Z

FIG. 3. Table of Homotopy Groups ⇡
s

(G/H) of the ten symmetric spaces appearing in the Ten-Fold-Way.[16, 57]. Here,
according to (44), s = d when ⇡

s

(G/H) = Z2, whereas according to (45), s = d + 1 when ⇡
s

(G/H) = Z. The left-arrows
indicate that due to (45) the boundary dimension d of the Topological Insulator (Superconductor) with the corresponding Z
classification is located at the end of the arrow. After moving all entries Z to the end of the corresponding arrows, and after
shifting all columns of the Table in FIG. 3 - this implements the rules specified in (44, 45) - one obtains from FIG. 3 directly
the Table of Topological Insulators and Superconductors, TABLEs III and IV.

Cartan\d 0 1 2 3 4 5 6 7 8
Complex case:

A Z 0 Z 0 Z 0 Z 0 Z · · ·
AIII 0 Z 0 Z 0 Z 0 Z 0 · · ·
Real case:

AI Z 0 0 0 2Z 0 Z2 Z2 Z · · ·
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 · · ·
D Z2 Z2 Z 0 0 0 2Z 0 Z2 · · ·
DIII 0 Z2 Z2 Z 0 0 0 2Z 0 · · ·
AII 2Z 0 Z2 Z2 Z 0 0 0 2Z · · ·
CII 0 2Z 0 Z2 Z2 Z 0 0 0 · · ·
C 0 0 2Z 0 Z2 Z2 Z 0 0 · · ·
CI 0 0 0 2Z 0 Z2 Z2 Z 0 · · ·

TABLE IV. Table of Topological Insulators and Superconductors[14–17] .
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Part 1 
Introduction to topological insulators

If the bulk has nontrivial topology, !
then the edge has disorder-resistant bound states!

(‘bulk-boundary correspondence’)



Part 2 
A topological quantum memory

An almost noiseless qubit is obtained by putting together many noisy qubits



|L> |R>

v

The charge qubit

two sites

single electron

5

FIG. 2. A noiseless memory (left) and how to use it (right).

⌧
wait

⌧
u

| 
0

i = ↵ |Li+ � |Ri

2. appears (e.g., electric-field fluctuations) as an uncontrolled, random component in the charge qubit

Assume we can tune ✏, �. Want to conserve quantum information: we prepare a quantum state | 
0

i =
↵ |Li + � |Ri, and would like it to survive as long as possible. We could set ✏ = 0 and � = 0 for that, so that
there is no dynamics at all.

3. How much of the information has survived? We define classical fidelity of classical probability distributions.
(We define quantum fidelity of pure states. We define quantum fidelity of mixed states. We define .But don’t
use those now.) How to probe the survival of classical/quantum information experimentally? You have to do
many measurements.

4. Noise erases quantum information. We define classical noise.

5. Quasistatic tunneling noise. We define it. We consider two initial states, z and x. We show that x does not care
about noise. We show that x cares about noise.

6. A stronger tunneling noise implies a shorter qubit lifetime.

7. Quasistatic noise can be eliminated by echo pulses.

8. Exercise. Arbitrary initial state. Calculate the time dependence of the classical and quantum fidelity for an
arbitrary pure initial state. Use the usual angular parametrization of the qubit states for the initial state
| i = cos(✓/2) |Li+ sin(✓/2)ei' |Ri.

9. Exercise. Describe the e↵ect of quasistatic on-site energy noise.

III. NOISELESS CHARGE QUBIT CAN BE USED AS A QUANTUM MEMORY

1. Basis: noisy charge qubit left and right, noiseless charge-qubit quantum memory left and right.

2. u triggers and controls the information transfer; it is switched on if t 2 [0, t
⇡

] (transfer in), switched o↵ in
t 2 [t

⇡

, t
⇡

+ t
w

(waiting), switched o↵ in t 2 [t
⇡

+ t
w

, 2t
⇡

+ t
w

] (transfer out).

H =

0

B@

0 v u(t) 0
v 0 0 u(t)

u(t) 0 0 0
0 u(t) 0 0

1

CA . (9)

3. Storage and retrieval Transfer amplitude u.

4. Quantum memory is useful if the transfer is fast enough. Break-even point u
b

.

5. Figure of merit of the quantum memory: the height of the fidelity plateau.

6. Quantum memory is optimized for infinitely fast transfer amplitude.

7. Slightly noisy charge-qubit quantum memory.

8. Figures of merit: height and duration of fidelity plateau.

3

A central concept in topology is the topological space. Take an example: the two-dimensional plane without the
origin. I’ll call this the ”punctured plane”, to indicate that the origin is excluded. A second example is this closed
loop, called loop A, which is embedded in the punctured plane, and does not enclose the origin. The third example is
this closed loop, called loop B, which is also embedded in the punctured plane, but this one encircles the origin. All
these objects, the punctured plane, loop A, and loop B, are topological spaces.

A reasonable question at this point is the following. Is loop A topologically equivalent to loop B? To answer this
question, one should specify what ”topological equivalence” means. One possible definition: I call them topologically
equivalent, if I can define a continuous function that maps loop A to loop B, and its inverse maps loop B to loop A. If
I use this definition, then I conclude that loop A is topologically equivalent with loop B. Another possible definition:
I call them topologically equivalent, if I can continuously deform loop A on the punctured plane such that I end up
with loop B. Clearly, I cannot do that, so I conclude that loop is not topologically equivalent with loop B.

These two di↵erent types of topological equivalence are captured by the concepts of homeomorphic equivalence and
homotopic equivalence. For this talk, we should care about the second one, homotopic equivalence. If I take this
definition, then the next question is the following. I can see with my eyes that these loop A and loop B

ssh model: picture, real-space hamiltonian, momentum-space hamiltonian, spectrum, gap;
to describe an insulator, the v = w line should be avoided
notice that the momentum-space hamiltonian is a map from the unit circle to the punctured plane, and it either

does not encircle the origin, or encircles it once. winding number 0,1 bulk has trivial/nontrivial topology. bulk is
trivial/topological bulk phase diagram

II. QUANTUM MEMORY

H =

✓
✏ v
v �✏

◆
(4)

To preserve the state, set ✏ = v = 0.

Appendix A: Formal definitions in topology, with examples relevant for topological insulators

Topological space.
Homeomorphism. Take two topological spaces, for example, loop A and loop B. They are homeomorphic, if there is

a continuous bijective function connecting the two. Clearly, the punctured plane is not homeomorphic to either loop
A or loop B. Clearly, loop A is homeomorphic to loop B.

Homotopy. Take two functions, f, g : S1 ! PP , where S1 is the unit circle and PP is the punctured plane.
They are homotopic, if they can be continuously deformed into each other, i.e., if there is a continuous function
H : S1⇥ [0, 1] ! Y such that H(x, 0) = f(x) and H(x, 1) = g(x). Clearly, loop A and B can be regarded as S1 ! PP
functions, so it does make sense to ask the question ”is loop A homotopic with loop B”? The answer is no.

Control question: In talks about topology, an often-invoked example for topological equivalence is the comparison
of the sphere, the co↵ee cup and the donut. Consider these three objects as two-dimensional surfaces embedded in
three-dimensional space. Classify these objects according to homeomorphic and homotopic equivalence, if possible.
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a continuous bijective function connecting the two. Clearly, the punctured plane is not homeomorphic to either loop
A or loop B. Clearly, loop A is homeomorphic to loop B.

Homotopy. Take two functions, f, g : S1 ! PP , where S1 is the unit circle and PP is the punctured plane.
They are homotopic, if they can be continuously deformed into each other, i.e., if there is a continuous function
H : S1⇥ [0, 1] ! Y such that H(x, 0) = f(x) and H(x, 1) = g(x). Clearly, loop A and B can be regarded as S1 ! PP
functions, so it does make sense to ask the question ”is loop A homotopic with loop B”? The answer is no.

Control question: In talks about topology, an often-invoked example for topological equivalence is the comparison
of the sphere, the co↵ee cup and the donut. Consider these three objects as two-dimensional surfaces embedded in
three-dimensional space. Classify these objects according to homeomorphic and homotopic equivalence, if possible.
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how well is it preserved?



Information can survive if transferred to a less noisy qubit
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FIG. 1. Information is lost if encoded in a noisy charge qubit (red), but can be preserved in a noiseless memory
(blue).

where we use the notation G(µ,�, x) for the Gausssian pdf for variable x with mean µ and standard deviation
�:

G(µ,�, x) =
1p
2⇡�

e�
(x�µ)2

2�2 . (7)

The task now is to characterize information loss due to this noise. Take the left-localized initial state for
concreteness, | 

0

i = |Li. We have already solved the time evolution for a fixed hopping amplitude. Utilizing
that, and following the generic statistical averaging procedure described above, we find

F (t) =

r
1 + e�2t

2
�

2
/~2

2
. (8)

For t = 0, we have F (t) = 1, as expected. For long times t ! 1, we have F (t) = 1/
p
2, i.e., information encoded

in the charge qubit is completely lost. The crossover between the two values, i.e., the loss of information, happens
on the time scale t

loi

= ~/�. Note that we could have reached this conclusion just using dimensional analysis: the
only energy scale in our problem is �, therefore the only characteristic time scale is ~/�. This is sometimes called
qubit lifetime. (In certain noise models similar to this one, this time scale is sometimes called inhomogeneous
dephasing time, and is denoted by T ⇤

2

.) The numerical value of this time scale, for hopping noise strength
� = 1µeV, is t

loi

⇡ 0.658 ns. The analytical result (8) is shown as the red solid line in Fig. 2. The red dots show
the result of a Monte Carlo check, when we draw 5000 random values of v using a Gaussian pdf, determine the
time evolution for each realization, construct the density matrix from those, and evaluate the fidelity from that
density matrix. The solid red line and the red dots show a reasonable agreement.

6. Exercise. Work out the fidelity evolution F (t) for the initial states | i = (|Li + |Ri)/
p
2 and | i = (|Li +

i |Ri)/
p
2.

II. NOISELESS CHARGE QUBIT CAN BE USED AS A QUANTUM MEMORY

1. An elementary quantum memory. We can prepare an arbitrary quantum state in our noisy charge qubit, but
the information gets lost due to the uncontrolled tunneling noise. Assume that we have a noiseless charge qubit,
which we can use to hide the information in the noisy charge qubit, and thereby prolong the lifetime of the
prepared quantum state. A simple scheme for this is shown in Fig. ??.

u
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FIG. 2. A noiseless memory (left) and how to use it (right).
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↵ |Li + � |Ri, and would like it to survive as long as possible. We could set ✏ = 0 and � = 0 for that, so that
there is no dynamics at all.

3. How much of the information has survived? We define classical fidelity of classical probability distributions.
(We define quantum fidelity of pure states. We define quantum fidelity of mixed states. We define .But don’t
use those now.) How to probe the survival of classical/quantum information experimentally? You have to do
many measurements.

4. Noise erases quantum information. We define classical noise.

5. Quasistatic tunneling noise. We define it. We consider two initial states, z and x. We show that x does not care
about noise. We show that x cares about noise.

6. A stronger tunneling noise implies a shorter qubit lifetime.

7. Quasistatic noise can be eliminated by echo pulses.

8. Exercise. Arbitrary initial state. Calculate the time dependence of the classical and quantum fidelity for an
arbitrary pure initial state. Use the usual angular parametrization of the qubit states for the initial state
| i = cos(✓/2) |Li+ sin(✓/2)ei' |Ri.

9. Exercise. Describe the e↵ect of quasistatic on-site energy noise.
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memory figure of merit: fidelity plateau height (~98%)



Zero-energy SSH states are protected from hopping noise
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1.3.1 Fully dimerized limits

The SSH model becomes particularly simple in the two fully dimerized cases: if the
intercell hopping amplitude vanishes and the intracell hopping is set to 1, v = 1,w =
0, or vice versa, v = 0,w = 1. In both cases the SSH chain falls apart to a sequence
of disconnected dimers, as shown in Fig. 1.3.

Fig. 1.3 Fully dimerized limits of the SSH model, where the chain has fallen apart to disconnected
dimers. In the trivial case (top, only intracell hopping, v = 1,w = 0), every energy eigenstate is an
even or an odd superposition of two sites at the same unit cell. In the topological case, (bottom,
only intercell hopping, v = 0,w = 1), dimers are between neighboring unit cells, and there is 1
isolated site per edge, that must contain one zero-energy eigenstate each, as there are no onsite
potentials. .

The bulk in the fully dimerized limits has flat bands

In the fully dimerized limit, one can choose a set of energy eigenstates which are
restricted to one dimer each. These consist of the even (energy E = +1) and odd
(energy E =�1) superpositions of the two sites forming a dimer.

In the v = 1,w = 0 case, which we call trivial, we have

v = 1,w = 0 : Ĥ(|m,Ai±|m,Bi) =±(|m,Ai±|m,Bi). (1.19)

The bulk momentum-space Hamiltonian is Ĥ(k)= ŝx, independent of the wavenum-
ber k.

In the v = 0,w = 1 case, which we call topological, each dimer is shared between
two neighboring unit cells,

v = 0,w = 1 : Ĥ(|m,Bi±|m+1,Ai) =±(|m,Bi±|m+1,Ai), (1.20)

for m = 1, . . . ,N � 1. The bulk momentum-space Hamiltonian now is Ĥ(k) =
ŝx cosk+ ŝy sink.

In both fully dimerized limits, the energy eigenvalues are independent of the
wavenumber, E(k) = 1. In this so-called flat-band limit, the group velocity is zero,
which again shows that as the chain falls apart to dimers, a particle input into the
bulk will not spread along the chain.
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SSH chain with hopping noise is a good quantum memory
v

v vw

u(t) u(t)

noisy charge qubit

noisy SSH chain  
serving as a noiseless memory

memory figures of merit: height & duration of fidelity plateau

all hoppings v, w 
subject to the same 

amount of noise



Part 2 
A topological quantum memory

An almost noiseless qubit is obtained by putting together many noisy qubits



Why do you call SSH a `topological’ quantum memory?

topological 
quantum memory

quantum error 
correction codes

1. GS can be degenerate if real-space lattice is compact 
2. topology of real-space lattice => degree of GS degeneracy 
3. size-protected GS degeneracy 
4. (Kitaev chain, SSH: symmetry-protected GS degeneracy)

quadratic 
fermionic spin 

toric code
Kitaev 
chain

SSH chain

monatomic 
chain

non-super 
conducting

Heisenberg chain

lattice models

s-wave 
chain



Why do you call SSH a `topological’ quantum memory?

Short version of answer #1: because the Kitaev chain is called a topological quantum bit/
memory, and the SSH chain has the same properties (with particle-hole ->chiral)

Answer #2: because it is a quantum memory based on a topological insulator

Answer #3: hope more people read the abstract if `topological’ is in the title

`topological quantum memory’ `size- and symmetry-protected quantum memory’



Can one realize such a topological memory?
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Observation of the topological soliton state in
the Su–Schrieffer–Heeger model
Eric J. Meier1, Fangzhao Alex An1 & Bryce Gadway1

The Su–Schrieffer–Heeger (SSH) model, which captures the most striking transport

properties of the conductive organic polymer trans-polyacetylene, provides perhaps the most

basic model system supporting topological excitations. The alternating bond pattern of

polyacetylene chains is captured by the bipartite sublattice structure of the SSH model,

emblematic of one-dimensional chiral symmetric topological insulators. This structure

supports two distinct nontrivial topological phases, which, when interfaced with one another

or with a topologically trivial phase, give rise to topologically protected, dispersionless

boundary states. Here, using 87Rb atoms in a momentum-space lattice, we realize fully

tunable condensed matter Hamiltonians, allowing us to probe the dynamics and equilibrium

properties of the SSH model. We report on the experimental quantum simulation of this

model and observation of the localized topological soliton state through quench dynamics,

phase-sensitive injection, and adiabatic preparation.

DOI: 10.1038/ncomms13986 OPEN

1 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA. Correspondence and requests for materials should be
addressed to B.G. (email: bgadway@illinois.edu).
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agreement with the simple expectation of an inverse dependence
on Dfinal/t, and are mostly consistent with both a numerical
simulation of the actual experimental ramping protocol
(blue dashed line) as well as predictions based on the exact
mid-gap state (red line).

Discussion
Having observed clear evidence for the topological mid-gap
state of the SSH model in the non-interacting limit, we will extend
our work to study the stability of this state under the influence

of nonlinear atomic interactions. Repulsive, long-ranged
(in momentum space) interactions are naturally present in
our system due to the atoms’ short-ranged interactions in real
space, however the present investigation employs large tunnelling
bandwidths that dominate over the interaction energy scales.
Future explorations of interacting topological wires may
be enabled by reducing the imposed tunnelling amplitudes,
enhancing the atomic interactions (or their variation in
momentum space27), or through related techniques based on
trapped spatial eigenstates28 instead of free momentum
states25,26.

In addition, our arbitrary control over the simulated
model naturally permits investigations of critical behaviour and
quantum phase transitions in disordered topological wires29.
Topological phase transitions may also be explored in the context
of coupled topological wires30,31 upon extension of our technique
to higher dimensions. More generally, given our direct control
of tunnelling phases, momentum-space lattices in higher
dimensions will allow for the creation of arbitrary
and inhomogeneous flux lattices for cold atoms (this control
has recently been realised and will be reported elsewhere32).

Methods
Constructing the momentum space lattice. Our experiments begin with
the creation of 87Rb Bose-Einstein condensates containing B5! 104 atoms via
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Figure 3 | Phase-sensitive injection. (a) Absorption images detailing the
two-stage state initialization sequence. In stage 1, B35% of the atoms are
transferred from site zero to site one (indicated by the red arrow) with no
applied phase shift. In stage 2, nearly all of the atoms in site one are
transferred to site two with a controlled phase shift j. (b) The expectation
value of the site index n (average distance from the system’s edge) is
plotted versus the phase j of initialized states, following a Hamiltonian
quench and 760ms (B0.78 h/t) of evolution for D/t¼0.36(1). The dashed
line corresponds to a numerical solution of equation (1) given the prepared
initial state with no free parameters. (c) Absorption images taken after
760ms (B0.78 h/t) of evolution following the initialization and quench,
corresponding to phases of j¼ p (top) and j¼0 (bottom), respectively,
for D/t¼0.36(1). (d,e) Normalized population at lattice sites zero
(black circles), one (red squares) and two (open blue circles) versus
quench evolution time for D/t¼0.38(1). The shaded regions and dashed
lines denote initialization and imaging stages of the experiment,
respectively. All error bars denote one s.e. of the mean.
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Figure 4 | Adiabatic preparation. (a) Time sequence of
the smooth, 1 ms-long ramp of the weak tunnelling links (blue), holding the
strong (red) links fixed with D/t¼0.38(1). (b) Simulated (top) and
averaged experimental (bottom) absorption images for an adiabatically
loaded edge-defect lattice. (c) Same as (b), but for an adiabatically loaded
central-defect lattice. (d) Decay length of the atomic distribution on even
sites of the edge-defect lattice versus Dfinal/t. The dashed blue line
represents the results of a numerical simulation of the experimental
ramping protocol and the red line shows the exact mid-gap state decay
length as a function of D/t for a 21-site lattice. All error bars denote one s.e.
of the mean.
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Non-Abelian statistics and topological quantum
information processing in 1D wire networks
Jason Alicea1*, Yuval Oreg2, Gil Refael3, Felix von Oppen4 and Matthew P. A. Fisher3,5

The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies
most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum
information non-locally. Here we establish that a key operation—braiding of non-Abelian anyons—can be implemented using
one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles
known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be
meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p+ ip
superconductor. We propose experimental set-ups that enable probing of theMajorana fusion rules and the efficient exchange
of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that
benefits from physical transparency and experimental feasibility.

The experimental realization of a quantum computer ranks
among the foremost outstanding goals in physics and has
traditionally been hampered by decoherence. In this regard

topological quantum computing holds considerable promise, as
here one embeds quantum information in a non-local, intrinsically
decoherence-free fashion1–6. A toy model of a spinless, two-
dimensional (2D) p + ip superconductor nicely illustrates the
key ideas. Vortices in such a state bind exotic particles known
as Majorana fermions, which cost no energy and therefore
generate ground state degeneracy. Because of the Majoranas,
vortices exhibit non-Abelian braiding statistics7–11: adiabatically
exchanging vortices noncommutatively transforms the system from
one ground state to another. Quantum information encoded in this
ground state space can be controllably manipulated by braiding
operations—something the environment finds difficult to achieve.

Despite this scheme’s elegance, finding suitable ‘hardware’
poses a serious challenge. Although most effort has focused on
the quantum Hall state at filling fraction10,12 ⌫ = 5/2, numerous
realistic alternative routes to generating non-Abelian topological
phases have recently appeared13–20. Among these, two groups21,22
recognized that one-dimensional (1D) semiconducting wires
can be engineered, relatively easily, into Kitaev’s23 topological
superconducting state supporting Majorana fermions. Motivated
by this exciting possibility, we examine the prospect of exploiting
1Dwires for topological quantum computation.

The suitability of 1D wires for this purpose is far from obvious.
Manipulating, braiding, and realizing non-Abelian statistics of
Majorana fermions are all central to topological quantum computa-
tion (althoughmeasurement-only approaches sidestep the braiding
requirement5). Whereas Majorana fermions can be transported,
created, and fused by gating a wire, braiding and non-Abelian statis-
tics pose serious puzzles. Indeed, braiding statistics is ill-defined in
1D because particles inevitably ‘collide’ during an exchange. This
problem can be surmounted in wire networks, the simplest being
a T-junction formed by two perpendicular wires. Even in such
networks, however, non-Abelian statistics does not immediately

1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA, 2Department of Condensed Matter Physics, Weizmann
Institute of Science, Rehovot, 76100, Israel, 3Department of Physics, California Institute of Technology, Pasadena, California 91125, USA, 4Dahlem Center
for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany, 5Department of Physics, University of California,
Santa Barbara, California 93106, USA. *e-mail: aliceaj@uci.edu.

follow, as recognized by Wimmer and colleagues24. For example,
non-Abelian statistics in a 2D p+ ip superconductor is intimately
linked to vortices binding the Majoranas10,11. We demonstrate that,
despite the absence of vortices, Majorana fermions in semicon-
ducting wires exhibit non-Abelian statistics and transform under
exchange exactly like vortices in a p+ip superconductor.

We further propose experimental setups ranging from minimal
circuits (involving one wire and a few gates) for probing
the Majorana fusion rules, to scalable networks that permit
efficient exchange of many Majoranas. The ‘fractional Josephson
effect’13,21–23,25, along with Hassler et al.’s recent proposal26 enable
qubit readout in this setting. The relative ease with whichMajorana
fermions can be stabilized in 1D wires, combined with the physical
transparency of their manipulation, render these set-ups extremely
promising topological quantum information processing platforms.
Although braiding of Majoranas alone does not permit universal
quantum computation6,27–30, implementation of these ideas would
constitute a critical step towards this ultimate goal.

Majorana fermions in 1D wires
We begin by discussing the physics of a single wire. Valuable
intuition can be garnered from Kitaev’s toy model for a spinless,
p-wave superconductingN -site chain23:

H = �µ
NX

x=1

cx †cx �
N�1X

x=1

(t cx †cx+1 +|1|ei�cxcx+1 +h.c .) (1)

where cx is a spinless fermion operator and µ, t > 0, and |1|ei�
respectively denote the chemical potential, tunnelling strength,
and pairing potential. The bulk- and end-state structure becomes
particularly transparent in the special case23 µ = 0, t = |1|. Here
it is useful to express

cx = 1
2
e�i(�/2)(�B,x + i�A,x) (2)

with �↵,x = �↵,x
† Majorana fermion operators satisfying

{�↵,x ,�↵0,x 0} = 2�↵↵0�xx 0 . These expressions expose the defining
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in
the limit µ=0, t= |1|. Each spinless fermion in the chain is decomposed in
terms of two Majorana fermions �A,x and �B,x. Majoranas �B,x and �A,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy
end Majoranas �A,1 and �B,N as shown23. b, A spin–orbit-coupled
semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana
modes by applying an external magnetic field21,22. c, Band structure of the
semiconducting wire when B=0 (dashed lines) and B 6=0 (solid lines).
When µ lies in the band gap generated by the field, pairing inherited from
the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H = �it
N�1X

x=1

�B,x�A,x+1

Consequently, �B,x and �A,x+1 combine to form an ordinary fermion
dx = (�A,x+1 + i�B,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are �A,1 and �B,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend =
(�A,1+ i�B,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0i and |1i = dend†|0i,
where dend|0i=0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ| < 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
Z

dx

 x

†

✓
� h̄2@x 2

2m
�µ� ih̄uê ·�@x

� gµBBz

2
� z

◆
 x + (|1|ei' #x "x +h.c .)

�
(3)

The operator  ↵x corresponds to electrons with spin ↵, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and � = (� x ,� y ,� z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g � 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = 1 = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap /|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on 1
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and �k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and �k states.) Quantitatively, realizing the
topological phase requires21,22 |1|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |1| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | � mu2, |1| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing  "x ⇠ (u(ey + iex)/gµB|Bz |)@x9x and
 #x ⇠9x , with 9x the lower-band fermion operator. To leading
order, one obtains

Heff ⇠
Z

dx

9x

†

✓
� h̄2@x 2

2m
�µeff

◆
9x

+
�
|1eff|ei'eff9x@x9x +h.c .

��
(4)

whereµeff =µ+gµB|Bz |/2 and the effective p-wave pair field reads

|1eff|ei'eff ⇡
u|1|

gµB|Bz |
ei'(ey + iex) (5)

The dependence of 'eff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k = 0)=
����
gµB|Bz |

2
�

p
|1|2 +µ2

����

For |µ|<µc =
p
(gµBBz/2)2 � |1|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k)⇡ h̄v|k|, with velocity v = 2u|1|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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SSH model with cold atoms topological superconductors 
(see Prof. Ando’s talk)



Is the noisy SSH memory perfect?

Yes and no:  
fidelity plateau duration can be increased arbitrarily 

fidelity plateau height cannot 
Reason: noise-induced uncontrolled hybridization bw 1A and 2A



U i = U i = 0

vi ∼ N (v, σ2) wi ∼ N (w, σ2)

v, σ ≪ w

∆ =
2|v1||v2| . . . |vN |

wN−1
.

E(∆) =
2

wN−1

[
v

(
v√
2σ

)
+

√
2

π
σe−

v2

2σ2

]N
.

E(∆) =
2 vN

wN−1
,

v = 0

E(∆) =
2

wN−1

(√
2

π
σ

)N

.

U i = U i = 0

pH(ε) =
N∑

n=0

P2nε
2n,

P2n vi wi vi := λṽi wi := w + λw̃i

ε := λnε̃ ṽi w w̃i ε̃ O(1) λ → 0 n
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