A simple model for a topological quantum memory

Andras Palyi

Budapest University of Technology and Economics

From Topology to Superconductivity, Vienna, 2018.02.23

with:

Janos Asboth, Peter Boross, Laszlo Oroszlany, Gabor Szechenyi

Part 1 Introduction to topological insulators

If the bulk has nontrivial topology, then the edge has disorder-resistant bound states ('bulk-boundary correspondence')

SSH is a tight-binding toy model for polyacetylene

Polyacetylene

Su-Schrieffer-Heeger (SSH) model of polyacetylene

lattice constant a

Real-space tight-binding SSH Hamiltonian:

$$\hat{H} = v \sum_{m=1}^{N} \left(|m,B\rangle \langle m,A| + h.c. \right) + w \sum_{m=1}^{N-1} \left(|m+1,A\rangle \langle m,B| + h.c. \right).$$

intracell hopping

intercell hopping

For N=4:

$$H =$$

$$\begin{pmatrix}
0 & v & 0 & 0 & 0 & 0 & 0 & 0 \\
v & 0 & w & 0 & 0 & 0 & 0 & 0 \\
0 & w & 0 & v & 0 & 0 & 0 & 0 \\
0 & 0 & v & 0 & w & 0 & 0 & 0 \\
0 & 0 & 0 & w & 0 & v & 0 & 0 \\
0 & 0 & 0 & 0 & v & 0 & w & 0 & v \\
0 & 0 & 0 & 0 & 0 & w & 0 & v & 0
\end{pmatrix}$$

k-space Hamiltonian maps unit circle to complex plane

Real-space tight-binding SSH Hamiltonian:

$$\hat{H} = v \sum_{m=1}^{N} \left(\left| m, B \right\rangle \left\langle m, A \right| + h.c. \right) + w \sum_{m=1}^{N-1} \left(\left| m+1, A \right\rangle \left\langle m, B \right| + h.c. \right).$$

k-space SSH Hamiltonian:

$$H(k) = \begin{pmatrix} 0 & v + we^{-ik} \\ v + we^{ik} & 0 \end{pmatrix}$$

Brillouin zone of a 1D crystal is equivalent to the unit circle:

 $f_{v,w}$: unit circle $\to \mathbb{C}, k \mapsto v + we^{-ik}$

An insulating SSH Hamiltonian has a topological invariant

k-space SSH Hamiltonian:

$$H(k) = \begin{pmatrix} 0 & v + we^{-ik} \\ v + we^{ik} & 0 \end{pmatrix}$$

band structure, valence (-) and conduction (+) bands:

 $E(k) = \pm |f_{v,w}(k)| = \pm |v + we^{-ik}| = \pm \sqrt{v^2 + w^2 + 2vw\cos(k)}$

SSH parameter space has two topological phases

Part 1 Introduction to topological insulators

If the bulk has nontrivial topology, then the edge has disorder-resistant bound states ('bulk-boundary correspondence')

Zero intracell hopping implies zero-energy states at edges

Fully dimerized limits of the SSH Hamiltonian:

SSH Hamiltonians have chiral symmetry

Definition: a Γ local unitary operator is a *chiral symmetry* if $\Gamma H \Gamma^{\dagger} = -H$

SSH Hamiltonians have chiral symmetry:

Consequences of chiral symmetry

Up-down symmetric energy spectrum: $H\psi = E\psi$ implies $H(\Gamma\psi) = -E(\Gamma\psi)$ Finite-energy eigenstates have a 'chiral partner' at opposite energy A zero-energy eigenstate might be its own chiral partner $1 \oint_{1}^{\text{energy}} \frac{1}{1} \int_{1}^{1} \frac{1}{1} \frac{1}{1} \int_{1}^{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \int_{1}^{1} \frac{1}{1} \frac{1}{1$

Example: fully dimerized topological SSH chain

9x deg

2x deg

0

Chiral symmetry implies edge states in topological SSH

Take long fully dimerized topological SSH chain (v=0, w=1).

Switch on a uniform intercell hopping v.

Does the zero-energy edge state survive?

It does: its energy sticks to zero due to chiral symmetry.

The energy can leave zero only if the left and right edge states hybridize.

bulk-boundary correspondence

Edge states are robust against chiral-symmetric disorder

SSH is one creature in the zoo of topological insulators

symmetry classes

	spatia	al dime	ensior	าร
$\operatorname{Cartan} d$	1	2	3	-
Complex case:	-			-
А	0	\mathbb{Z}	0	quantum Hall effect
AIII	\mathbb{Z}	0	\mathbb{Z}	
Real case:				
AI	0	0	0	
BDI	\mathbb{Z}	0	0	SSH model
D	$\widetilde{\mathbb{Z}_2}$	\mathbb{Z}	0	
DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	0	\mathbb{Z}_2	\mathbb{Z}_2	quantum spin Hall effect
CII	$2\mathbb{Z}$	0	\mathbb{Z}_2	
С	0	$2\mathbb{Z}$	0	
CI	0	0	$2\mathbb{Z}$	

Table from A. W. W. Ludwig, Physica Scripta (2016)

Part 1 Introduction to topological insulators

If the bulk has nontrivial topology, then the edge has disorder-resistant bound states ('bulk-boundary correspondence') Part 2 A topological quantum memory

An almost noiseless qubit is obtained by putting together many noisy qubits

The charge qubit

$$\left|\psi_{0}\right\rangle = \alpha \left|L\right\rangle + \beta \left|R\right\rangle$$

$$H = \begin{pmatrix} \epsilon & v \\ v & -\epsilon \end{pmatrix} \qquad \begin{array}{c} v: \text{ hopping amplitude} \\ \epsilon: \text{ on-site energy difference} \end{array}$$

To preserve the state, set $\epsilon = v = 0$.

Hopping noise erases information in the charge qubit

Information can survive if transferred to a less noisy qubit

Zero-energy SSH states are protected from hopping noise

NCell=10, w=1, v=0

SSH chain with hopping noise is a good quantum memory

all hoppings v, w subject to the same amount of noise

memory figures of merit: height & duration of fidelity plateau

Part 2 A topological quantum memory

An almost noiseless qubit is obtained by putting together many noisy qubits

Why do you call SSH a `topological' quantum memory?

1. GS can be degenerate if real-space lattice is compact

- 2. topology of real-space lattice => degree of GS degeneracy
- 3. size-protected GS degeneracy
- 4. (Kitaev chain, SSH: symmetry-protected GS degeneracy)

Why do you call SSH a `topological' quantum memory?

Short version of answer #1: because the Kitaev chain is called a topological quantum bit/ memory, and the SSH chain has the same properties (with particle-hole ->chiral)

Answer #2: because it is a quantum memory based on a topological insulator

Answer #3: hope more people read the abstract if `topological' is in the title

Can one realize such a topological memory?

SSH model with cold atoms

topological superconductors (see Prof. Ando's talk)

ARTICLE

Received 27 Jul 2016 | Accepted 17 Nov 2016 | Published 23 Dec 2016

038/ncomms13986 OPEN

Observation of the topological soliton state in the Su-Schrieffer-Heeger model

Eric J. Meier¹, Fangzhao Alex An¹ & Bryce Gadway¹

ARTICLES PUBLISHED ONLINE: 13 FEBRUARY 2011 DOI: 10.1038/NPHYS1915	nature physics

Non-Abelian statistics and topological quantum information processing in 1D wire networks

Jason Alicea¹*, Yuval Oreg², Gil Refael³, Felix von Oppen⁴ and Matthew P. A. Fisher^{3,5}

Is the noisy SSH memory perfect?

Yes and no:

fidelity plateau duration can be increased arbitrarily fidelity plateau height cannot

Reason: noise-induced uncontrolled hybridization bw 1A and 2A

The expectation value of the minigap can be expressed as

$$\mathbb{E}(\Delta) = \frac{2}{w^{N-1}} \left[v \operatorname{Erf}\left(\frac{v}{\sqrt{2}\sigma}\right) + \sqrt{\frac{2}{\pi}\sigma} e^{-\frac{v^2}{2\sigma^2}} \right]^N$$

In the clear case this can be simplified as

$$\mathbb{E}(\Delta) = \frac{2\,v^N}{w^{N-1}},$$

whereas in the full dimerized limit, i.e. v = 0, we can obtain

$$\mathbb{E}(\Delta) = \frac{2}{w^{N-1}} \left(\sqrt{\frac{2}{\pi}} \sigma \right)^N \cdot \frac{\ln[2010] = 2 * (Sqrt[2 / \pi] 0.1)^2}{2 * (Sqrt[2 / \pi] 0.1)^5} \cdot \frac{2 * (Sqrt[2 / \pi] 0.1)^5}{2 * (Sqrt[2 / \pi] 0.1)^10}$$

Out[2010] = 0.0127324

Out[2011]=
$$6.46741 \times 10^{-6}$$

Out[2012]=
$$2.09137 \times 10^{-11}$$