Space Technology

Artifical Earth-orbiting satellites

László Csurgai-Horváth

Department of Broadband Infocommunications and Electromagnetic Theory

The first satellites in orbit

Telstar-1 (1962)

Kepler orbits

Kepler's laws (Johannes Kepler, 1571-1630) applied for satellites:

1.) The orbit of a satellite around the Earth is an ellipse, one focus of which coincides with the center of the Earth.
2.) The radius vector from the Earth's center to the satellite sweeps over equal areas in equal time intervals.
3.) The squares of the orbital periods of two satellites are proportional to the cubes of their semi-major axis: a^{3} / T^{2} is equal for all satellites

Kepler orbits: equatorial coordinates

The Keplerian elements: uniquely describe the location and velocity of the satellite at any given point in time using equatorial coordinates $r=(x, y, z)$
(to solve the equation of Newton's law for gravity for a two-body problem)

Elements:

Semi-major axis Eccentricity Inclination Longitude of the ascending node
$\omega \quad$ Argument of perigee
M Mean anomaly
(angle difference of a fictitious circular vs. true elliptical orbit)

Earth-centered orbits

Earth axis

Sidereal time: Earth rotation vs. fixed stars
One sidereal (astronomical) day: one complete Earth rotation around its axis (~ 4 min shorter than a normal day) Coordinated universal time (UTC):

- derived from atomic clocks
leap second, leap year

Perturbations 1.

The Earth's radius at the poles are 20km smaller (flattening)
The effects of the Earth's atmosphere
Gravitational perturbations caused by the Sun and Moon
\square Other:

- inhomogeneous Earth mass distribution 10°
- radiation pressure
- rise of the tide (oceans)
- relativistic effects

Perturbations 2.

Gravitational field models (CHAMP and GRACE missions)
\square Sun and Moon gravity:

Air drag; the atmosphere density variations:

Orbit models 1.

Variation of the Kepler's orbital elements:
$>$ semi-major axis, orbital inclination and mean anomaly
$>$ small temporal orbital elements variations
$>$ Gaussian variational theory
$>$ perturbation theory

Orbit models 2.

Simplified General Perturbations Model No. 4 (SGP4).
Originally developed for North American Aerospace Defense Command (NORAD) for continuous monitoring of near-Earth objects.

Orbit models 3.

The NORAD orbital elements are published in a two-line data format, or twoline elements: TLEs

ALPHASAT

1 39215U 13038A 16181.24794345 .00000000 00000-0 10000-3 09994 2392151.348032 .2103000122965 .4771294 .18411 .0027295410777

TLE line 1.

Field Columns Content
Example
1 01-01 Line number 1
2 03-07 Satellite number 25544
3 08-08 Classification (U=Unclassified) U
4 10-11 International Designator (Last two digits of launch year) 98
5 12-14 International Designator (Launch number of the year) 067
6 15-17 International Designator (piece of the launch) A
7 19-20 Epoch Year (last two digits of year) 08
8 21-32 Epoch (day of the year and fractional portion of the day) 264.51782528
$9 \quad 34-43$ First Time Derivative of the Mean Motion divided by two (rev/day ${ }^{2}$) -. 00002182
10 45-52 Second Time Derivative of Mean Motion divided by six (rev/day ${ }^{3}$) 00000-0
11 54-61 BSTAR drag term (ballistic coefficient; aerodynamics) -11606-4
12 63-63 Ephemeris type (orbital model) Always 0 0
13 65-68 Element set number. Incremented when a new TLE is generated for this object. 292
14 69-69 Checksum (modulo 10) 7

TLE line 2.

| Field | Columns | Content | Example |
| :---: | :---: | :--- | :--- | :--- |
| 1 | $01-01$ | Line number | 2 |
| 2 | $03-07$ | Satellite number | 25544 |
| 3 | $09-16$ | Inclination (degrees) | 51.6416 |
| 4 | $18-25$ | Longitude of the ascending node
 (degrees) | 247.4627 |
| 5 | $27-33$ | Eccentricity (decimal point assumed) | 0006703 |
| 6 | $35-42$ | Argument of perigee (degrees) | 130.5360 |
| 7 | $44-51$ | Mean Anomaly (degrees) | 325.0288 |
| 8 | $53-63$ | Mean Motion (revolutions per day) | 15.72125391 |
| 9 | $64-68$ | Revolution number at epoch
 (revolutions) | 56353 |
| 10 | $69-69$ | Checksum (modulo 10) | 7 |

Determination of orbit parameters

- Direction measurements (e.g. with antennas; transmitter on the satellite is required)
- Distance measurements (transponder on the satellite is required)
- Measure the change of distance (Doppler shift)
- Laser ranging (for accurate distance measurement)
- GPS-based position measurements on LEO satellites

Orbit design, lauch, maneuvers

Alphasat Launch, 25 July 2013, Ariane 5

Cosmic velocities

First cosmic speed: speed required to arrive an orbit around a celestial body

$$
\begin{aligned}
\mathrm{v}_{1}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}} \quad \begin{array}{l}
\mathrm{G}: \text { universal gravitational constant }\left(\mathrm{G}=6.67 \times 10-11 \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right) \\
\mathrm{M}: \text { mass of the celestial body } \\
\mathrm{R}: \text { radius of the celestial body }
\end{array}
\end{aligned}
$$

- velocity on Earth $\approx 7.91 \mathrm{~km} / \mathrm{s}$
- atmospheric friction is not taken into account
- for satellites at $200 \mathrm{~km}: 7.78 \mathrm{~km} / \mathrm{s}$

The rotation of Earth may help: launch at equator!

Escape velocity

\square Escape velocity: the object's kinetic energy \geq gravitational potential energy

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}} \quad \begin{array}{l}
\mathrm{G}: \text { universal gravitational constant } \\
\mathrm{M}: \text { mass of the body to be escaped } \\
\mathrm{R}: \text { radius of the celestial body }
\end{array}
\end{array}
$$

- escape velocity on Earth $\approx 11.19 \mathrm{~km} / \mathrm{s}$
- atmospheric friction is not taken into account
- this is an elliptical orbit around the Sun

Third cosmic velocity: to leave the Solar System

$$
\begin{aligned}
& v_{3}=\sqrt{\frac{2 G M}{D}} \begin{array}{l}
\mathrm{M}: \text { mass of the Sun } \\
\mathrm{D}: \text { Sun-Earth distance }
\end{array} \\
& \mathrm{v}_{3}=42.3 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Fourth cosmic velocity: to leave the Milky Way ~130km/s

Orbits 1: LEO (Low Earth Orbit)

Height: $300-1500 \mathrm{~km}$
\square Nearly round orbit; 80-120min

1. Non-polar LEOㅇ inclination<70
 (ISS, Hubble)
2. Polar, Sun-synchronous; inclination $\sim 90^{\circ}$ (remote sensing, ESEO)

Transit above a specific point: always at the same time 7-16 orbits/day
3. Polar, non Sun-synchronous (METEOR series, GOCE)

LEO ground track

Orbits 2: MEO (Medium Earth Orbit)

Height: 2000-36000km
Orbiting period: 2-24hr
\square Van-Allen belt!

1. Navigation satellites (GPS, Galileo)
2. Communication satellites (Telstar)

3. Satellites for geodesy and space environment (Lageos)

MEO ground track

Orbits 3: HEO (Highly Elliptical Orbit)

A Apogeum > 36000km, Perigeum ~1000km
\square Inclination: 50-70

1. Molniya orbit 500/40000km
long visibility, 12 hr period

2. Tundra orbit

24500/47000km period=1 sidereal day

HEO ground track

Orbits 4: GEO orbits

Orbital period: exactly 24 hr

1. Geostationary inclination $=0^{\circ}$ 35786 km
period=1 sidereal day (Meteosat)

2. Geosynchronous orbit inclination $\neq 0^{\circ}$
 tracking required period=1 sidereal day (Alphasat)
3. Lagrange points stable: L4,L5 unstable: L1,L2,L3

Orbital maneuvers 1.

\square Moving between two circular orbits: Hohmann transfer (most energy efficient transfer)

1. LEO orbit

2. increase velocity to $10.1 \mathrm{~km} / \mathrm{s}$
3. at 36.000 km decrease velocity to $3.1 \mathrm{~km} / \mathrm{s}$

Geostationary orbit

Orbital maneuvers 2.

LEO satellite for remote sensing

1. The orbital period is synchronized with the Earth's rotation
2. After a certain period of time the satellite flies over the same ground track (repeat orbit)
3. Ensure that lighting conditions vary as little as possible between different exposures of the same area (Sun-synchronous orbit)
4. Correction maneuvers are required regularly to compensate orbital perturbations

Orbital maneuvers 3.

\square Geostationary satellites

1. Semi-major axis $=42164.3 \mathrm{~km}$
2. Perturbations:

- The irregular form of the Earth
- Gravitational perturbations
- Inclination vector drift (Sun and Moon effects)

3. Geographical longitude and latitude may not exceed $\pm 0.1^{\circ} / 150 \times 150 \mathrm{~km}$
4. Regular orbital control maneuvers are required about in every two weeks

Animation created with data from the GRACE spacecraft, shows the variances in Earth's gravity field NASA / University of Texas Center for Space Research

Azimuth and elevation

Tracking systems 1.

Tracking systems 2.

Tracking systems 3.

Tracking systems 4.

Sources:

G Gary D. Gordon, Walter L. Morgan:
Principles of Communications Satellites
Wiley, ISBN: 978-0-471-55796-8
\square Wilfried Ley, Klaus Wittmann and Willi Hallmann (ed):
Handbook of Space Technology
Wiley, ISBN: 978-0-470-69739-9

Main topics / questions

\square Kepler's laws
Role of the Keplerian elements
\square Perturbation effects that influencing Earth orbiting satellites
\square The TLE orbital element set (only the role and a summary)
\square Orbit types (LEO,MEO,HEO,GEO)
The Hohmann transfer (figure)
\square Azimuth and elevation degrees (figure)

