

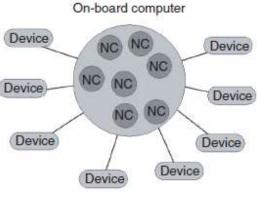
# Digital circuits and systems in space 2.

László Csurgai-Horváth

#### Department of Broadband Infocommunications and Electromagnetic Theory



Budapest University of Technology and Economics


### Spacecraft data management

- 1. Control and surveillance: on-board computer
- 2. Payload monitoring and control: payload computer
  - data reduction
  - computing performance
  - resource sharing
  - replace HW functions with SW
  - FPGA

Interconnection:

- Star
- **B**us
- Mixed

(Node Computer)



Star topology

Central or distributed computers

## **Onboard computer - sizes**

#### Picosatellites ... big satellites >1000 kg

Miniature satellites:

CubeSat:

ESEO:

ACTIVE (1989):



1 kg, 10\*10\*10 cm

100 kg, 100\*100\*100 cm

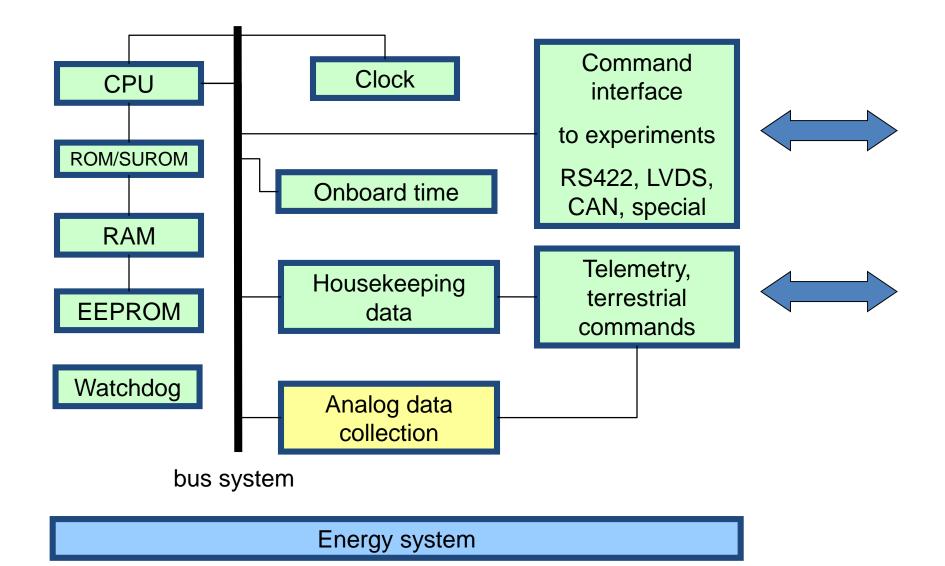
#### 1570 kg

< 500 kg

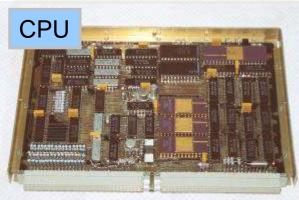


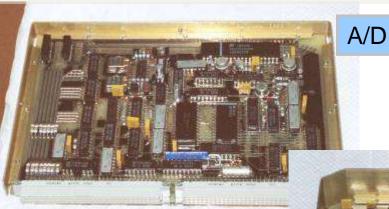


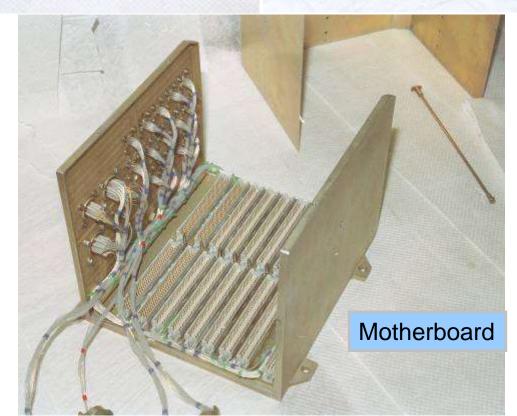





## The onboard computer

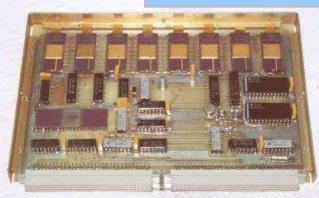

Multiple structure/complexity is possible – small satellites → big systems


- Role of central control unit
- External communication
- Control the onboard systems
- Create telemetry structure
- Data storage
- Control autonomous operation
- Measurement data collection

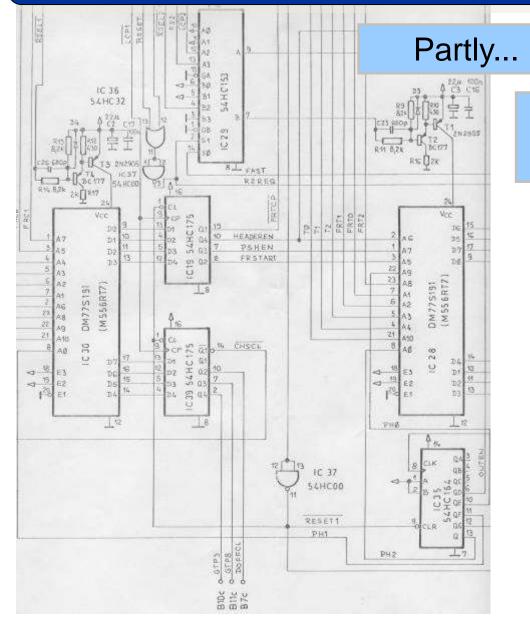

## **Block diagram**



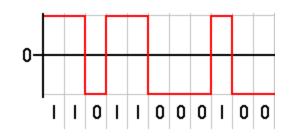
# Historical example: uP-based onboard computer and data collection system (ODCS, 80-90th)

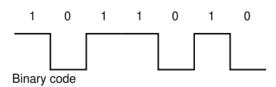





Interface


#### Communication




## **Digital telemetry system**

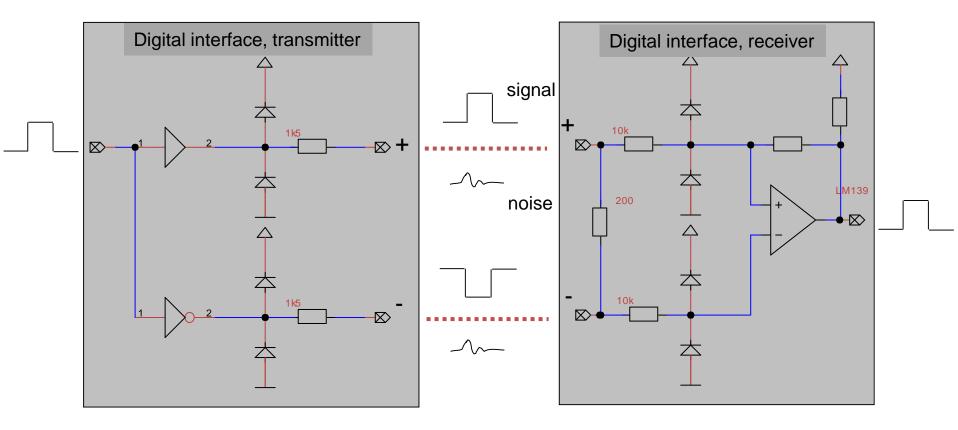


#### 10/20/40/80 kbit/sec NRZ/BPSK





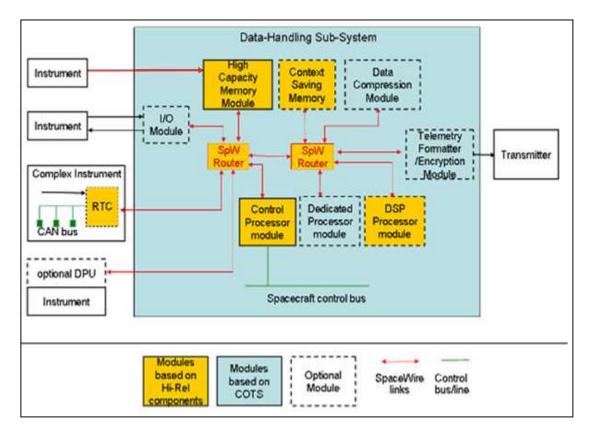
Carier wave


BPSK modulated signal

## Data transfer between modules

Usually a kind of serial data transmission is applied
 USART, RS-232
 RS-422

- **RS-485**
- LVDS
- CAN-bus
- □ SpaceWire


## Noise-free digital data transmission



Symmetrical current loop

## SpaceWire (ECSS-E50-12A standard)

- · Communication between onboard devices compatibility
- Serial data transmission (differential data/strobe signals)
- 2-200 Mbit/s
- Bidirectional, full duplex



- Implementable in FPGA (5-8000 gate)
- packet based data transfer
- error tolerant

#### Rosetta

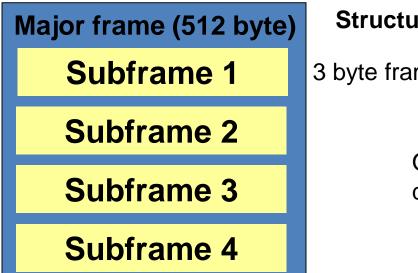


## **Telecommand system (Earth-satellite)**

- Contolling with command–delayed execution
- Direct commands—immediate execution
- Typical commands:
  - Energy system related
  - Telemetry/telecommand-system control
  - Communication related
  - Satellite positioning
  - Experiments (payload) control
- Command execution:
  - immediate
  - delayed
  - adaptive mode

## **Telemetry (satellite-Earth)**

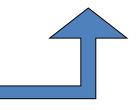
- Overall information relating to satellite
  - Pressure
  - Temperature
  - Vibration
  - Position
  - Acceleration
  - Power supply voltages
- Subsystem's data
- Experiment's data


Numerous, slowly variable signals

## **Command and telemetry format**

• Frame structure is a general solution:

| Synchronization | Device<br>address | Command/<br>Status | Data | Error<br>detection/<br>correction |
|-----------------|-------------------|--------------------|------|-----------------------------------|
|-----------------|-------------------|--------------------|------|-----------------------------------|


ODCS (Onboard Data Collection System) frame structure:



#### Structure-memory: programmable frame-system

3 byte frame synchron / 4 byte housekeeping / 121 byte data

Outputs from digital and analog data collection systems



### **ESEO telemetry**

#### UHF <u>beacon</u> 437MHz GFSK

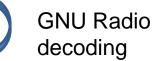
#### Simplified AX.25 protokoll, Reed-Solomon error correction

 0000:
 8a
 a6
 8a
 9e
 40
 40
 60
 92
 ae
 68
 88
 aa
 98
 61
 d2
 00

 0010:
 f0
 04
 7a
 66
 03
 87
 03
 9e
 03
 9e
 03
 5b
 03
 4f
 03
 00

 0020:
 00
 05
 00
 02
 00
 01
 00
 0c
 00
 3d
 ff
 6c
 ff
 bf

 0020:
 00
 05
 00
 02
 00
 01
 00
 0c
 00
 3d
 ff
 6c
 ff
 bf


 0030:
 ff
 63
 00
 5a
 00
 5f
 00
 7f
 00
 7d

 0040:
 00
 7a
 00
 80
 00
 76
 00
 71
 00
 cd
 5f
 00
 aa
 ac
 00
 a0

 0050:
 00
 07
 00
 80
 00
 02
 00
 00
 00
 10
 00
 02

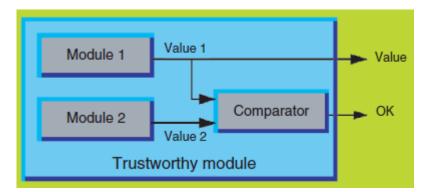
#### Decoded data (parts)

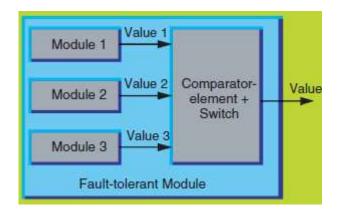
pm\_mps\_valve\_m\_current = 0
pm\_dom\_1\_current = 0
pm\_obdh\_red\_current = 23
pm\_rx\_red\_current = 100
pm\_tx\_red\_current = 1
pm\_ss\_red\_current = 0
pm\_mm\_red\_current = 0
pm\_mw\_red\_current = 1
pm\_mt\_red\_current = 96
pm\_es\_current = 0
pm\_ucam = 0
pm\_amsat\_current = 1
pm\_lmp\_current = 0



(https://sites.google.com/site/eseodecoded/home)

### **Onboard software 1.**


- □ The core of a space mission: similar to a subsystem
- □ Complexity is increasing: testing is difficult
- □ Software functions:
  - Boot sequence and OS
  - Running applications (multitasking)
  - Payload data management and reduction
  - On-the-fly processing
  - Real-time operation
  - Housekeeping
  - Telemetry/command interpreter
  - Controlling subsystems


## **Onboard software 2.**

- Fault tolerant solutions required
  - Code checksum
  - PZ pattern (observing memory pattern)
  - Applying watchdog
  - Command checking, error correction
  - Multitasking/scheduler
  - Telemetry redundancy, error correction
  - On-board memory, data storage

## Safety and reliability

- □ Reliability of the control system
  - 10<sup>-9</sup>-10<sup>-6</sup> failure/hr
- Decrease complexity for the lowest possible level
- Implement fast recovery strategies
- Optimize redundancy level
- □ Fault tolerant systems
  - □voter, watchdog, EDAC/EDC





### Measurement data collection: common tasks

- Sampling analog channels
  - Multiplexing
  - Input level, mode, amplification
  - External/internal clocks
  - Single/continous/burst sampling (FIFO!)
  - Pre/post trigger
- Digital channel sampling
- Timer/counter functions
- Trigger signal generation
- Analog output (PWM, D/A)
  - D/A FIFO cyclic signal generation
- Advanced interrupt logic (multiple sources, priority, level ...)

### The onboard data collection system

- A simple case: the onboard computer acts as data collection system
- Close cooperation with telemetry system
- Main functions of the data collecting system:
  - collect digital data
  - collect analog data
  - interface to experiments
  - level translation
  - communication with the onboard computer

### ADC0816: 8 bit, 16 ch, 100 μs, 15 mW, single supply

B23c

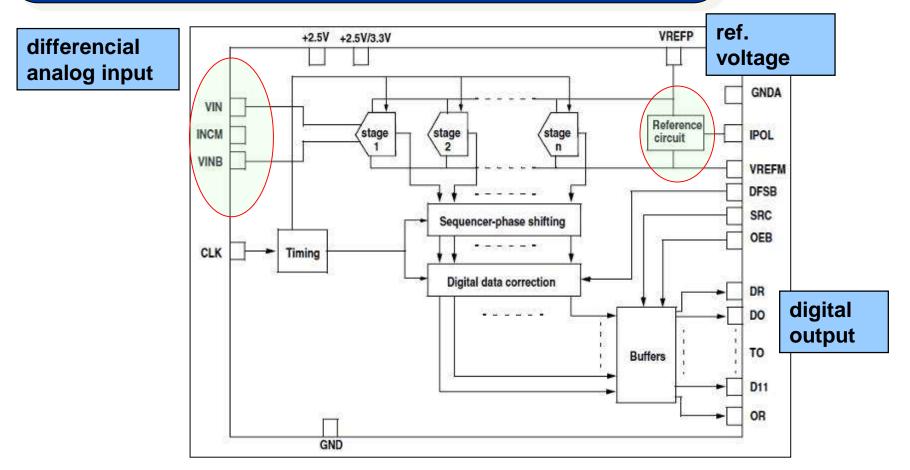
514

R 21\* R22\* R24\* R39\* 0 setup resistors RBUS RBUS RBUS RBUS RBUS RBUS 10 10 Range R 39 RBC 00 5V 8.8 k 63V for test R101-R115: 4,7.k C101-C115: 510 pF CHO 26 27 28 29 30 31 -Z15: ZF6.3 DØ D1 22 D3 34 25 D6 D7 Z1 21 CHØ TSC 13 EOC CH1 O R101 CH5 36 ÷ C101 AØ **∆**Z1 CH2 O 35 R102 CH2 A4 34 ZZZ. 〒 €102 A2 CH3 O R103 33 C83 A3 15 6 23 中 C103 AC -0 03 CH4 0 R104 -10V + 10V 30 CH4 柔 z 4 ÷€104 CH5 0 R105 18 CH5 C1 CIN 4zs 8 5/8 宁 C105 R39 CHG o 1R106 CHG 8,84 41 16 ALE Z26 中 C10G CT CHOLD CHT O R107 32 START CH7 Z27 412 = C107 ADC-0816 CH8 CH8 o R44 R108 -H IC 26 Z 28 = C108 100k F 198 CH9 o R109 5 28 GND CH9 又 29 中 0109 -Up 23 CHIO R110 CH10 ZZ10 = C110 CH11 R 111 CHI 023 全211 中C111 CH120 R112 10 CH12 - TOV + YOK 素<sup>212</sup> ± C112 CH13 LC 21 R113 CHH3 620k MC1776G r 5,12V **圣**213 ÷C113 CHILO R114 17 Vcc CH14 19 + Up ZZ14 - C14 31 CH15 R115 皇 619 14 =C2D 37 CH15 En 22,11 1000 文215 ± CH5 CP. R24

22

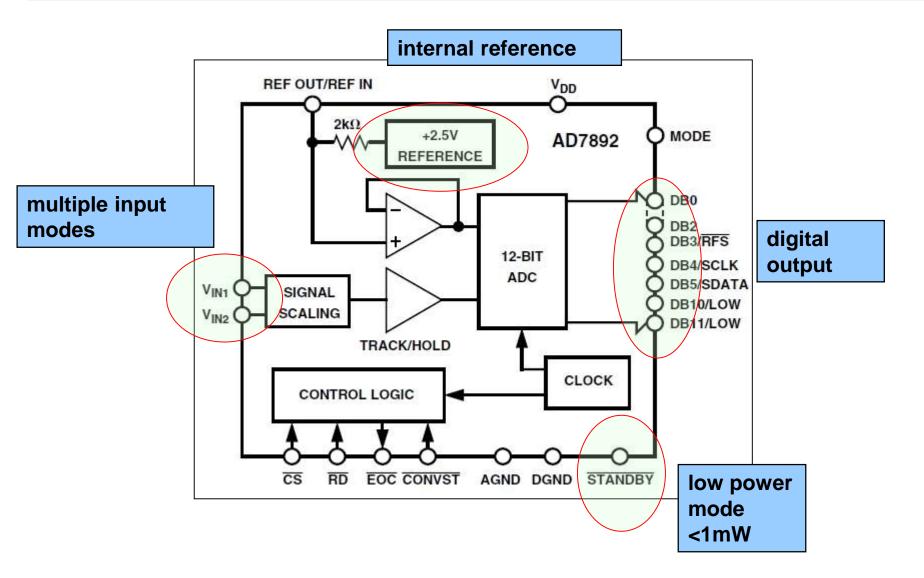
A40 A40 A30 A30 A20

A2c


000

A5 A5

sample & hold circuitdifferential input


## RHF1201 300 krad, 12 bit, 50 Msps/100 mW, CMOS





(STMicroelectronics)

### AD7892, 12 bit, 600 ksps/60 mW LC<sup>2</sup>MOS ~20 krad (Rosetta)



The role of the onboard data handling system
The telemetry and the telecommand system
A simple telemetry frame structure
The onboard data collection system
Onboard serial communication types